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PREFACE

——

A BICYCLE or a tricycle is a more or less complex machine,
and for a thorough appreciation of the stresses and strains
to which it is subjected in ordinary use, and for its efficient
design, an extensive knowledge of the mechanical sciences
is necessary. Though an extensive literature on nearly all
other types of machines exists, there is, strange to say,
very little on the subject of cycle design; periodical
cycling literature being almost entirely confined to racing
and personal matters. In the present work an attempt
is made to give a rational account of the stresses and
strains to which the various parts of a cycle are sub-
jected ; only a knowledge of the most elementary portions
of algebra, geometry, and trigonometry being assumed,
while graphical methods of demonstration are used as far
as possible. It is hoped that the work will be of use to
cycle riders who take an intelligent interest in their
machines, and also to those engaged in their manufacture.

The present type of rear-driving bicycleis the outcome of
about ten years’ practical experience. The old ¢ Ordinary,’
with its large front driving-wheel, straight fork, and curved
backbone, was a model of simplicity of- construction,

187339



vi Bicycles and Tricycles

but with the introduction of a smaller driving-wheel,
driven by gearing from the pedals, and the consequent
greater complexity of the frame, there was more scope for
variation of form of the machine. Accordingly, till a
few years ago, a great variety of bicycles were on the
market, many of them utterly wanting in scientific design.
Out of these, the present-day rear-driving bicycle, with
diamond-frame, extended wheel-base, and long socket
steering-head—the fittest—has survived. A better techni-
cal education on the part of bicycle manufacturers and
their customers might have saved them a great amount
of trouble and expense. Two or three years ago, when
there seemed a chance of the dwarf front-driving bicycle
coming into popular favour, the same variety in design of
frame was to be seen ; and even now with tandem bicycles
there are many frames on the market which evince on the
part of their designers utter ignorance of mechanical
science. If the present work is the means of influencing
makers, or purchasers, to such an extent as to make the
manufacture and sale of such mechanical monstrosities in
the future more difficult than it has been in the past, the
author will regard his labours as having been entirely
successful.

The work is divided into three parts. Part I is on
Mechanics and the Strength of Materials, the illustrations
and examples being taken with special reference to bicycles
and tricycles ; Part II. treats of the cycle as a complete
machine ; and Part [I]. treats in detail of the design of its
various portions.

The descriptive portions are not so complete as might
be wished ; however, the * Cyclist Year Books, published
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early in each year, enable anyone interested in this part cf
the subject to be well informed as to the latest novelties
and improvements.

The author would like to express his indebtedness to
the following works :

The ‘ Cyclist Year Books’;

‘ Bicycles and Tricycles of the Year,’ by H. H. Griffin,
a valuable series historically, which extends from
1878 to 1889 ;

‘Cycling Art, Energy, and Locomotion, by R. P.
Scott ;

‘ Traité des Bicycles et Bicyclettes,” par C. Bourlet ;

The ¢ Cyclist’ weekly newspaper ;

and to the various cycle manufacturers mentioned in
the text, who have, without exception, always afforded
information and assistance when asked. He has also to
thank Messrs. Ackermann and Farmer for assistance in
preparing drawings, and Messrs. Ackermann and Hummel
for reading the proofs.

In a work like the present, containing many numerical
cxamples, it is improbable that the first issue will be
entirely free from error; corrections, arithmetical and
otherwise, will therefore be gladly rececived by the author.
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PART 1
b( PRINCIPLES OF MECHANICS

CHAPTER 1

FUNDAMENTAL CONCEPTIONS OF MECHANICS

1. Division of the Subject.— Geometry is the science which
treats of relations in space. Kinematics treats of space and
time, and may be called the geometry of motion. Dynamics is
the science which deals with force, and is usually divided into
two parts—statics, dealing with the forces acting on bodies which
are at rest ; kinetics, dealing with forces acting on bodies in motion.
Mechanics includes kinematics, statics, kinetics, and the applica-
tion of these sciences to actual structures and machines.

2. Space.—The fundamental ideas of time and space form
part of the foundation of the science of mechanics, and their
accurate measurement is of great importance. The British unit
of length is the smperial yard, defined by Act of Parliament to be
the length between two marks on a certain metal bar kept in the
office of the Exchequer, when the whole bar is at a temperature of
60° Fahrenheit. Several authorised copies of this standard of
length are deposited in various places. The original standard is
only disturbed at very distant intervals, the authorised copies
serving for actual comparison for purposes of trade and commerce.
The yard is divided into three fees, and the foot again into twelve
inches. Feetand inches are the working units in most general use
by engineers. The inch is further subdivided by engineers, by a
process of repeated division by two, so that }”, 17, ", /", &c.,
are the fractions generally used by them. A more convenient

B



2 Principles of Mechanics CHAP. 1.

subdivision is the decimal system into v, 134, 1oln, &C. ; this is
the subdivision generally used for scientific purposes.

The unit of length generally used in dynamics is the foo.

Metric System. — The metric system of measurement in
general use on the Continent is founded on the metre, originally
defined as the , ..o part of a quadrant of the earth from the
pole to the equator. This length was estimated, and a standard
constructed and kept in France. The metre is subdivided into
ten parts called decimetres, a decimetre into ten centimetres,
and a centimetre into ten millimetres. For great lengths a
kilometre, equal to a thousand metres, is the unit employed.

1 metre = 39°371 inches = 32809 feet.
1 kilometre = 062138 miles.

1 inch = 25°3995 millimetres.

1 mile = 1°'60931 kilometres.

3. Time.—The measurement of time is more difficult theo-
retically than that of space. Two different rods may be placed
alongside each other, and a comparison made as to their lengths;
but two different portions of time cannot be compared in this
way. ‘Time passed cannot be recalled.’

The measurement of time is effected by taking a series of
events which occur at certain intervals. If the time between any
two consecutive events leaves the same impression as to duration
on tbe mind as that between any other two consecutive events,
we may consider, tentatively at least, that the two times are equal.
The standard of time is the siderea/ day, which is the time the
earth takes to make one complete revolution about its own axis,
and which is determined by observing the time from the apparent
motion of a fixed star across the meridian of any place to the
same apparent motion on the following day. The intervals of
time so measured are as nearly equal as our means of measure--
ment can determine.

The solar day is the interval of time between two consecutive
apparcnt movements of the sun across the meridian of any place.
This interval of time varies slightly from day to day, so that for
purposes of everyday life an average is taken, called the mean
solar day. ‘The mean solar day is about four minutes longer than
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subdivision is the decimal system into vy, 140, 100, &C.; this is
the subdivision generally used for scientific purposes.

The unit of length generally used in dynamics is the foos.

Metric System.—-The metric system of measurement in
general use on the Continent is founded on the metre, originally
defined as the ... part of a quadrant of the earth from the
pole to the equator. This length was estimated, and a standard
constructed and kept in France. The metre is subdivided into
ten parts called decimetres, a decimetre into ten centimetres,
and a centimetre into ten millimetres. For great lengths a
kilometre, equal to a thousand metres, is the unit employed.

1 metre = 39°371 inches = 32809 feet.
1 kilometre = 0762138 miles.

1 inch = 25°3995 millimetres.

1 mile = 1'60931 kilometres.

3. Time.—The measurement of time is more difficult theo-
retically than that of space. Two different rods may be placed
alongside each other, and a comparison made as to their lengths,
but two different portions of time cannot be compared in this
way. ‘Time passed cannot be recalled.’

The measurement of time is effected by taking a series of
events which occur at certain intervals. If the time between any
two consecutive events leaves the same impression as to duration
on the mind as that between any other two consecutive events,
we may consider, tentatively at least, that the two times are equal.
The standard of time is the sidercal day, which is the time the
earth takes to make one complete revolution about its own axis,
and which is determined by obscrving the time from the apparent
motion of a fixed star across the meridian of any place to the
same apparent motion on the following day. The intervals of
time so measured are as nearly cqual as our means of measure--
ment can determine.

The solar day is the interval of time between two consccutive
apparent movements of the sun across the meridian of any place.
‘This interval of time varies slightly from day to day, so that for
purposes of everyday life an average is taken, called the mean
solar day. ‘The mean solar day is about four minutes longer than
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the sidereal day, owing to the nature of the earth’s motion round
the sun.

The mean solar day is subdivided into twenty-four Aours,
one hour into sixty minufes, and one minute into sixty seconds.
The second is the unit of time generally used in dynamics.

4. Matter.—Another of our fundamental ideas is that
relating to the existence of matter. - The question of the measure-
ment of quantity of matter is inextricably mixed up with the
measurement of force. The mass, or quantity of matter, in one
body is said to be greater or less than that in another body,
according as the force required to produce the same effect is
greater or less. The mass of a body is practically estimated by
its weight, which is, strictly speaking, the force with which the
earth attracts it. This force varies slightly from place to place
on the earth’s surface at sea level, and again as the body
is moved above the sea level. Thus, the mass and the weight
of a body are two totally different things ; and many of the
difficulties encountered by the student of mechanics are due to
want of proper appreciation of this. The difficulty arises from the
fact that the pound is the unit of matter, and that the weight of
this quantity of matter, Z.e. the force by which the earth attracts
it, is used often as a unit of force. A certain quantity of lead
will have a certain weight, as shown by a spring-balance, in
London at high level water-mark, and quite a different weight if
taken twenty thousand feet above sea level, although the mass is
the same in both places.

The British unit of mass is the imperial pound, defined by
Act of Parliament to be the quantity of matter equal to that of a
certain piece of platinum kept in the office of the Exchequer.

- The unit of mass in the metrical system of measurement is the
gramme, originally defined to be equal to the mass of a cubic
centimetre of distilled water of maximum density. This is, how-
ever, defined practically, like the British unit, as that of a certain
piece of platinum kept in Paris.

B2
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s peed of the point 4 on the rim is measured by the arc 4, 4,,
while the angular speed of the wheel is measured by the angle
A, O 4,. Generally, the angular speed of a body rotating uniformly
is the angle turned through in unit of time.

The angular speed may be expressed in various ways. For
example, the number of degrees in the angle 4, O 4, swept out per
second may be expressed ; this method, however, is little used prac-
tically. The method of expressing angular velocity most in use
by engineers, is to give the number of revolutions per minute, 7.

One revolution = 360° ; revolutions per

4 minute can be converted into degrees
A per second by multiplying by 360 and di-
y viding by 60, that is, by multiplying by 6.

! For scientific purposes another
method is used. Mathematicians find
that the most convenient unit angle to
adopt is not obtained by dividing a
right angle into an arbitrary number of

parts ; they define the unit angle as that which subtends a circular

arc of length equal to theradius. Thus, in figure 1,if thearc 4, 4,

be measured off equal to the radius O 4, the angle 4, O 4, will

be the unit angle. This is called a radian.

The ratio of the length of the circumference of a circle to its
diameter is usually denoted in works on mathematics and
mechanics by the Greek letter = (pronounced like the English
word ‘pie’), and is 3. 14159 . . . . This number is ‘incom-
mensurable,” which means that it cannot be expressed exactly in
our ordinary system of numeration. It may, however, be ex-
pressed with as great a degree of accuracy as is desired ; a very
rough value often used for caculations is 3!. It is easily
seen that there are » radians in an angle of half a revolution,
and therefore the angle of one revolution, that is, four right

FiG. 1.

angles, is 2« radians. Therefore, 1 radian = 326’_9 = 57°28°

The angular speed « of a rotating body is expressed in radians
turned through per second, and
2T n

= 6o (2)
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8. Relation between Linear and Angular Speeds.—The
connection between the angular speed of a rotating body
and the linear specd of any point in it may now be easily ex-
pressed. Let O (fig. 1) be the centre of the rotating body, and 4
a point on it, distant » from the centre, which moves in unit of
time from A, to 4,, the number of units in the linear speed of 4
is equal to the number of units in the length of the arc 4, 4,,
similarly the angular speed of the rotating body is numerically
equal to the angle 4, O A4, in radians. But this by definition
must be equal to the arc 4, 4, divided by the radius O 4,, hence
if o (omega) be the angular speed of a rotating Lody, v the linear
speed of any point on it distant  from the centre, we have

Z’
m=’(3)

The speed of a bicycle is conveniently expressed in miles per
hour, and the angular speed of the driving-wheel in revolutions
per minute. ILet » be the speed in miles per hour, D the
diameter of the driving-wheel in inches, and » the number of
revolutions of the driving-wheel per minute ; then feet and
seconds being the units in (3),

_ ¥V x 528 , = D
2 X 12

__2mn

v

60’ 3600
Substituting in (3) we get

2rn _ V x 5280 x 2 X 12

60 3600 x D !
. _ nD
from which V = 33613 (4)

that is, the speed of the bicycle in miles per hour is equal to the
number of revolutions per minute of the driving-wheel, multiplied
by the diameter of the driving-wheel in inches, and divided by
33613,

A more convenient rule than the above for finding the speed
of a bicycle can be deduced. ILet V be the number of revolu-
tions of the driving-wheel made in 7 seconds ; then

N = 'L_-)-(—(, and n = 6o.V,

6o
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Substituting in (4), we get

y=0ND
33613 ¢

Now, suppose that AV be chosen equal to V; that is, # is
chosen such that the number of revolutions in # seconds is equal
to the number of miles travelled in one hour. Substituting above
we get

D
1_3'502,. P ()
which is equivalent to the following convenient rule. Divide the
diameter of the driving-wheel in inches by 5°502, the number of
revolutions of the driving-wheel made in the number of seconds
equal to this quotient is equal to the speed of the cycle in miles
per hour.

If, in a geared-up cycle, D be taken as the diameter to which
the driving-wheel is geared, /V will be the number of revolutions
per minute of the crank-axle, and formula (5) will still apply.

9. Variable 8peed.—The numerical example in section 6
may help towards a clear understanding of the measurement of
variable speed. When the speed of a moving body is changing
from instant to instant, if we want to know the speed at a certain
point, it would be quite incorrect to observe the space described
by the body in, say, one hour or one minute after passing the
point in question ; but the smaller the interval of time chosen,
the more closely will the average speed during that interval
approximate to the speed a¢ the instant of passing the point of
observation.

Now, suppose the body after passing the point to move with
exactly the same speed it had at the point, and that in ¢ seconds
it moves over s feet, its speed at the point of observation would

be % feet per second. In a very small fraction of a second, say

1dooth, the amount of change in the speed of the body is very
small, and by taking a sufficiently small period of time the average
speed during the period may be considered equal to the speed at
the beginning of the period, without any appreciable error. The

-
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speed at any instant will thus be expressed by equation (1),
provided ¢ be chosen small enough.

Suppose a bicyclist just starting to race, and that we wish to
observe his speed at a point 5 feet from the starting-point. We
observe the instant he passes the point, and the distance he
travels in a period of time reckoned from that instant. If in a
minute he travel 2,400 feet, his average speed during that time

2400
= 60
from the same instant, he may only travel 420 feet, giving an

= 4o feet per second. But in a quarter-minute, reckoned

average speed of 41259 = 28 feet per second; while in five

seconds- he may only have travelled 110 feet, in one second
15 feet, in one-tenth of a second 1°05 foot, in one-hundredth part
of a second one-tenth part of a foot, with average speeds during
these periods of 22, 15, 10°5, and 10 feet per second. The last
of these values may be taken as a very close approximation to his
speed when passing the point in question.

10. Velocity.—If the speed of a point and the direction of
its motion be known, its ve/ocity is defined : thus, in the concep-
tion °velocity,” those of ‘speed’ and ‘direction’ are involved.
Velocity has been defined as ‘speed directed,’ or ‘rate of change
of position.” Again, speed may be defined as the magnitude of
velocity.

Velocity, involving as it does the idea of direction, can there-
fore be represented by a straight line, the direction of which
indicates the direction of the motion, and, by choosing a suitable
scale, the length of the line may represent the speed, or the
magnitude of the velocity. A quantity which has not only
magnitude and algebraical sign, but also direction, is called a
vector quantity. Thus, velocity is a vector quantity. A quantity
which has magnitude and sign, but is independent of direction, is
called a sca/ar quantity. Speed is a scalar quantity.

Velocity may be Zinear or angular ; it may also be uniform or
variable. A point on a body rotating with uniform angular speed
about a fixed axis has its linear speed uniform, but since the
direction of its motion is continually changing, its linear velocity
is variable, its angular velocity is uniform. Angular velocity can
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also be represented by a vector, the direction of the vector being
parallel to the axis of rotation, and the length of the vector being
equal to the angular speed.

11. Rate of Change of Speed.—If a moving body at a
certain instant has a speed of 3 feet per second, and a second
later a speed of 4 feet per second, two seconds later a speed
of 5 feet per second, three seconds later a speed of 6 feet
per second, and so on; in one second the speed increases by
1 foot per second. In other words, its rate of change of speed
is 1 foot per second per second.

Rate of change of speed may be either uniform or variable.
An important example of uniform rate of change of speed is that
of a body falling freely under the action of gravity. If a stone be
dropped from a height, its speed at the instant of dropping is
zero ; at the end of one second, as determined by experiment,
322 feet per second approximately ; at the end of two seconds,
64°4 feet per second ; at the end of three seconds, 96°6 feet per
second-—at least, these would be the speeds if the air offered no
resistance to the motion. Thus the rate of change of speed of a
body falling freely under the action of gravity is 32°2 feet per
second per second.

If « be the rate of change of speed of a body starting from
rest, at the end of ¢ seconds its speed will be

v=at . . . . . . . . . . (6)

Its average speed during the time will be ¥ « ¢4, and therefore the
space it passes over in time / is

s=%at xt=%at2 . . . . . ()

A cyclist starting in a race affords a good example of variable
rate of change of speed. At the instant of starting the speed of
the machine and rider is zero ; at the end of two seconds it may
be five miles an hour ; at the end of three seconds, nine miles an
hour ; at the end of four seconds, thirteen ; at the end of five, seven-
teen ; at the end of six, twenty ; at the end of seven, twenty-two ;
at the end of eight, twenty-three ; at the end of nine, twenty-
three and threequarters—the increase in the speed with each
second becoming smaller and smaller until, say fifteen or twenty



caae. 1. Speed, Rate of Change of Speed, &e. I

seconds from the start, the maximum speed is reached, the speed
remains constant, and the rate of change becomes zero. In this
case not only the speed, but also its rate of change, is variable.
The rate of change probably increases at first, and reaches its
maximum soon after the start, then diminishes, and ultimately
reaches the value zero. If the speed of a body diminish, its
rate of change of speed is negative. A cyclist while pulling up
previous to stopping is moving with negative rate of change of
speed.

The unit of rate of change of speed, like that of speed, is a
compound one, into which the fundamental units of time and space
enter. In expressing rate of change of speed we have used the
phrase ‘feet per second per second’ ; this deserves careful study
on the part of the beginner, as a proper understanding of the
ideas involved in these units is absolutely necessary for satisfactory
progress in mechanics. This rate of change is often loosely
spoken of in some of the earlier text books as so many ‘feet per
second ’ ; this method of expression is quite wrong. For instance,
considering the rate of change of speed due to gravity, we have
stated above that it is 32 feet per second per second. This means
that at the end of one second the speed of a freely falling body
is increased by an additional speed of 32 feet per second, or
1,920 feet per minute. In one minute the speed would be in-
creased by sixty times the above additional speed—that is, by
1,920 feet per sccond, or 115,200 feet per minute. This rate of
change of speed may therefore be expressed either as ¢ 32 feet
per second per second,’” ‘1,920 feet per minute per second,’” or
‘115,200 feet per minute per minute.’

The relation between the units of rate of change of speed,
space, and time is expressed by the formula (7), which may be
written

which shows that the magnitude of the unit rate of change of
speed is proportional to that of unit space, and inversely propor-
tional to the square of that of unit time.

12. Rate of Change of Angular S8peed.—The angular speed
of a rotating body may be either constant or variable ; in the



12 Principles of Mechanics CHAP. 11.

latter case the rafe of change of amgular speed is the increment
in one unit of time of the angular speed. Let 6 be the rate of
change of angular speed, a the rate of change of linear speed of
any point on the body distant # from the centre, then

=2 . . ... ®

13. Acceleration is rate of change of velocity ; it may be
zero, uniform, or variable. When it is zero the velocity remains
constant, and the motion takes place in a straight line.

When a point is moving with uniform speed in a circle, though
its speed does not change, the direction of its motion changes,
and therefore its velocity also changes. It must therefore be sub-
jected to acceleration. An acceleration which does not change
the speed of the body on which it acts must be in a direction at
right angles to that of the motion, and is called radia/ accelera-
tion. An acceleration which does not change the direction of a
moving body must act in the direction of motion, and is called
tangential acceleration. The magnitude of the tangential accele-
ration is the rate of change of speed.

14. Force—The definition and measurement of force has
afforded scope for endless metaphysical disquisitions. Force has
been defined as * that which produces or tends to produce motion
in a body.” The unit of force is defined as ‘that force which,
acting for one unit of time on a body initially at rest, produces at
the end of the unit of time a motion of one unit speed.” If the
units of space, mass, and time be one foot, one pound, and
one second respectively, the unit of force is called a powndal.
In the centimetre-gramme-second system of units, the unit of
force is called a dyne. The measurement of the unit of mass
involves the idea of force, so that perhaps no satisfactory logical
definition can be given.

The unit of force above defined is called the adsolute unit.
The magnitude of a force in absolute units is measured by the
acceleration it would produce in unit of time on a body of unit
mass. The force with which the earth attracts one pound of
matter is equal to 32°2 poundals, since in one second it produces
an acceleration of 32-2 feet per second per second. Generally,

.
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if a force f acting on a mass m produces an acceleration «, we
have f=ma. . . . . . ... (9

The unit of force used for practical purposes is the weight of
one pound of matter ; this is called the gravitation unit of force. If
f be the number of absolute, and # the number of gravitation units
in a force, f = ¢F or

S =k F=L .. (0
. . &

The acceleration due to gravity is usually denoted by the
letter g&. The value of g, or, in other words, the weight of unit
mass in absolute units of force, as has already been stated above,
varies from place to place on the earth’s surface. For Britain its
value is approximately 32°2, the foot-pound-second system of units
being used.

Great care must be exercised in distinguishing between one
pound quantity of matter and 1 Ib. weight, the former being a
unit of mass, the latter an arbitrary unit of force.

15. Momentum.—The product of the mass of a body into
its velocity is called its guantity of motion or momentum. The
momentum of a body of mass one pound moving with a velocity
of ten feet per second, is thus the same as that of a body of mass
ten pounds moving with a velocity of one foot per second.

16. Impulse.—Multiply both sides of equation (g9) by ¢ we

then get
g ft=mul.

But if the body start from rest, « # = o, its velocity at the ¢nd of
lsecondsttherefore ft=mov . . . . . . . .0

Equation (11) asserts thercfore that the momentum, mz, of a
body initially at rest is equal to the product of the force acting
on it and the time during which the force acts.  The product f¢
is called the fmpulse of the force.

Equation (11) is true, however small 4, the time during which
the force acts, may be. Now a momentum of 10 foot-pounds
per second may be generated by the application of a force of
1 Ib. acting for ten seconds, or a force of ten poundals for one
second, or a force of 1000 poundals acting for y},th part of a
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second ; and so on. When two moving bodies collide, or when
a blow is struck by a hammer, the surfaces are in contact for a
very small fraction of a second, and the mutual force between
the bodies is very great. Neither the force nor the time during
which it acts can be directly measured, but the momentum of the
bodies before and after collision can be easily measured. Such
forces of great magnitude acting for a very short space of time
are called impulsive forces ; they differ only in degree, but not in
kind, from forces acting for appreciably long periods.

17. Moments of Force, of Momentum, &c.— Let figure 2
represent a body fastened by a pin at O, so that it is free to turn
about O as a centre, but is otherwise
constrained. Let it be acted on by the
forces £, and P,. Now, it is a matter
of every day experience that the turning

——— effect of such a force as 2, depends not
. only on its magnitude, but also, in popu-
lar language, on its leverage, that is, on the length of the perpen-
dicular from the centre of rotation to the line of action of the force.
For example, in screwing up a nut, if a long spanner be used the
force required to be exerted at its end is much smaller than if a
short spanner be used. The product 2, /, of the force into this
distance is called the moment of the force about the given centre.
The force P, tends to turn the body in the direction of the hands
of a watch, while 2, tends to turn the body in the opposite direc-
tion. Therefore, if the moment 2, /, be considered positive, the
moment /£, /, must be considered negative. The positive direction
is usually taken contra-clockwise.

If the body be at rest under the action of the forces 2, and
£, their moments must be equal in magnitude but of opposite
sign ; that is, their algebraic sum must be zero.

The moment of momentum about a given point O of a body of
mass » moving with velocity » is the product of its momentum
m v, and the length of the perpendicular / from the given point to
the direction of motion—iz.e., m v /. In the same way the moment
of an impulse.f# is the product of the impulse and the length of
the perpendicular from the given point to the line of action of the
impulse - f.e., f¢/.
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CHAPTER III

KINEMATICS ; ADDITION OF VELOCITIES

18. Graphic Representation of Velocity..—For the complete
specification of a velocity two elements—its magnitude and
direction—are necessary. If a body be moving at any instant
with a certain velocity, the direction of the motion may be repre-
sented by the direction of a straight line drawn on the paper, and
the speed of the body by the length of the straight line. For this
purpose the unit of speed is supposed to be represented by any
convenient length on the paper ; the number of times this length
is contained in the straight line drawn will be numerically equal
to the speed of the body. I‘or example, the
line a & (fig. 3) represents a velocity of three d
feet per second in the direction of the arrow,
while the line ¢ & represents a velocity of two
feet per second in a direction at right angles a |, 1€ 4
to that of the former. The scale of velocity Fro
in this diagram has Dbeen taken 1 foot per
second = 4 inch. In the same way, any quantity which involves
direction as well as magnitude can be represented by a straight
line having the same direction and its length proportional to
some scale to the magnitude of the quantity. Such a straight
line is called a ector.

Lxample. - If a wheel be turning about its axis with uniform
speed, the velecities of all points on its rim are numerically equal,
but have all different directions.  Thus, the velocities of the
points 4, /3, and C on the rim (fig. 4) are represented by the three
equal lines, fa, /6, and Cerespectively at right angles to the
radii O, OB, and O C.

19. Addition of Velocities. .\ body may be subjected at
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the same instant to two or more velocities, and its aggregate
velocity may be required. For example, take a man climbing the
mast of a ship. Let the ship move horizontally in the direction
a b (fig. 5), and let the length a4 indicate the space passed over
by it in one second. Let a ¢ be the mast, and as it passes the
point a let the man commence climbing. At the end of one
second suppose he has climbed the distance a 4. The line a 4
will represent the velocity of the man climbing up the mast, the
line a 4 the velocity of the ship. But if a ¢ be the position of the
mast at the beginning of the second, at the end of the second it
will be in the position 4 ¢!, and the man will be at 4!, the length
b d' being, of course, the same as a 4. The actual velocity, in

4
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magnitude and direction, of the man is represented by the line
ad'. At the end of half a second the foot of the mast would be
at ¢, a e being equal to } a4, and the man would have ascended
the mast a distance a f'; the actual position of the man would be
S, midway between @ and Z'. Thus his actual motion in space
will be along the line a 4.

The two velocities @ 4 and a @ above are called the component
velocities, and the velocity a &' the resultant velocity of the
man.

20. Relative Velocity.—We have spoken above of the
motion of a body, meaning thereby the motion of the body in
relation to the objects in its immediate neighbourhood, but these
objects themselves may be in motion in relation to some other
objects. For example, a man walking from window to window of
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a railway carriage in rapid motion has a motion of a certain
velocity relative to the carriage. But the carriage itself is in
motion relative to the earth, and the motion of the man relative
to the earth is quite different from that relative to the carriage.
Again, the earth itself is not at rest, but rotates on its own axis,
so that the man’s motion relative to a plane of fixed direction
passing through the earth’s axis is still more complex. But besides
a motion round its own axis, the earth has a motion round the
sun. The sun itself, and with it the whole solar system, has a
motion of translation relative to the visible universe ; in fact,
there is no such thing as absolute rest in nature. Therefore,
having no body at rest to which we can refer the motion of any
body, we know nothing of absolute motion. The motions we
deal with, therefore, are all relative, and the velocities are also
relative. It will thus often be necessary, in specifying a velocity
to express the body in relation to which it is measured.

21. Parallelogram of Velocities.—Given two component
uniform velocities to which a body is subjected, the resultant
velocity of the body may therefore be found as follows :—
Draw a parallelogram with two adjacent sides, 0 a and 0 4 (fig. 6),

fl
/I

0 > 4

Fic. 6. Fii. 7.

representing in magnitude and direction the component velocities”
The resultant velocity is represented in magnitude and direction
by the diagonal o ¢ of the parallelogram. This proposition is
known as the parallelogram of velocities. Since velocity involves
the two ideas of speed and direction, but not position, the
resultant of two velocities may also be found by the following
method :—Let 0 & (fig. 7) be one of the given velocities ; from 4
draw 4 ¢ equal and parallel to the other ; 0 ¢ will represent the
resultant velocity.

Vector Addition—The geometrical process used above is

c
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called ¢ vector addition,’ and is used in compounding any physical
quantities that can be represented by, and are subject to the same
laws as, vectors. Accelerations, forces acting at a point, rotations
about intersecting axes, are treated in this way. In general, the
sum of any number of vectors is obtained by placing at the final
point of one the initial point of another, and so forming an
unclosed irregular polygon ; the vector formed by joining the
initial point of the first to the final point of the last is the required
sum, the result being independent of the order in which the com-
ponent vectors are taken. Thus, the sum of the vectors 04, 4¢,
cd, de, and ¢ f (fig. 7) is the vector o /.

22. Velocity of any Point on a Rolling Wheel. —Let a
wheel roll along the ground, its centre having the velocity o.
The wheel as a whole partakes of this velocity, which may be

Fic. 8.

represented by the line O a (fig. 8). The relative motion of the
wheel and ground will be the same if we consider the centre of
the wheel fixed and the ground to move backwards with velocity
2. In this way it is seen that the linear speed of any point on
the rim of the wheel relative to the frame is equal to ». We can
now find the velocity, relative to the earth, of any point 4 on the
rim of the wheel. The point A4 is subjected to the horizontal
forward velocity A a, with speed v, and to the velocity with speed
z,in a direction A4 a, at right angles to O 4, due to the rotation of
A round 0. The resultant velocity is obtained by completing
the parallelogram A4 a, A' a,. The diagonal 4 4! represents the
velocity of A4 in magnitude and direction. If the point on the
rim be taken at 4, the point of contact with the ground, it will be
seen that the parallelogram in the above construction reduces to
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two coincident straight lines. In this case, however, it is easily
seen that the velocity of A4, due to the rotation of the wheel, is
backwards, and, therefore, when added to the forward velocity due
to the translation of the wheel, the resultant velocity is zero. On
the other hand, if the point be taken at A4, the top of the wheel,
the velocity due to rotation is in the forward direction. Thus, the
velocity of the uppermost point of the wheel is 2 ¥ —that is, twice
the velocity of the centre.

In the same way the velocity of any point B on one
of the spokes may be found. Join O a, and draw B 4,
parallel to 4 a;, meeting O a, at 4,. The velocity of B, due to
rotation, is represented by B 4,. Draw B 4, equal and parallel to
A ay, and complete the parallelogram B4, B! ;. The velocity of
B is represented by B B'. It will be found that the velocity of B
is greatest when passing its topmost position B,, and least when
passing its lowest position B,.

The above problem can be dealt with by another method.
The motion of the wheel has been compounded of two motions,
the linear motion of the bicycle and the motion of rotation of the
wheel about its axis. But the resultant motion of the wheel—
that is, its motion relative to the ground—can be more simply
expressed. If the wheel rolls on the ground without slipping, its
point of contact A, is, at the moment in question, at rest. The
linear velocity of the wheel’s centre O is evideutly the same as that
of the bicycle #, and is in a horizontal direction. The centre of
the wheel, therefore, may be considered to rotate about the point
A,. But as the wheel is a rigid structure, every point on
it must be rotating about the same centre. The point A4,
is called the snstantaneous centre of rotation of the wheel. The
linear velocity of any point on the wheel is, by (3) (chap. ii.), equal
to w r, where » is the distance of the point from the centre of

rotation 4,. But w is equal to f, where ry is the radius of the
[4]

wheel ; therefore, the linear velocity of any point B on the wheel
is equal to : AyB, and is in thc direction B B! at right angles

0
to A, B.
The centre of rotation 4, of the wheel is called an snstan-
c2
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taneous centre of rotation, as distinguished from a fixed centre of
rotation, since when the wheel is rolled through any distance
however small, its point of contact with the ground, and therefore
its centre of rotation, is changed.

23. Resolution of Velocities is the converse of the addi-
tion of velocities, and has for its object the finding of com-
ponents in two given directions, whose resultant motion shall be
equal to the given motion. If o ¢ (fig. 6) be the given velocity,
0 b and o a the directions of the required components, the latter
are found by drawing from ¢ straight lines, ¢ 4 and ¢ 4, parallel
respectively to 0@ and o 4, cutting them atbanda:obandoa
represent the required components.

Example.—Suppose a cyclist to ride up an incline of one in
ten at the rate of ten miles an hour. To find at what rate he

rises vertically, draw a horizon-

tal line 4 B (fig. 9) ten inches

A long, and a vertical line B C

Fic. o one inch long; join 4 C.

Along this line to any conve-

nient scale mark off 4 D, the velocity ten miles an hour (14% feet

per second). Draw D £ at right angles to 4 B, meeting 4 B,

produced, if necessary, at £. D E is the required vertical velocity

of the cyclist. By measurement this is found to be 1°46 feet per
second (less than 1 mile per hour).

Example.—A cyclist is riding along the road with a velocity
indicated in direction and magnitude by O 4 (fig. 10). The wind is
blowing with velocity O B,and is therefore partially in the direction
in which the cyclist is riding. To find the apparent
direction of the wind, that is, its direction relative
to the moving bicycle, join 4 B and draw O C
equal and parallel to 4 B; O C will be the
velocity of the wind apparent to the cyclist, which is
thus apparently blowing partially against him. The

8 ¢ velocity O C can be resolved into two, O D dead
Fic. 10. against the cyclist,and D C sideways, C D being
drawn at right angles to 4 O. For, from the

parallelogram of velocities it is seen that the actual velocity, O B,
of the wind relative to the earth is compounded of its velocity

A [4

Q

—....Y
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relative to the bicycle O C, and the velocity of the bicycle, O 4,
relative to the earth.

The above figure may explain why cyclists seldom seem to
feel a back wind, while head winds seem always to be present.

24. Addition and Resolution of Accelerations.—An accele-
ration involves the idea of magnitude and direction, but not
position ; it may, therefore, be represented by a vector. Figs. 6
and 7 are, therefore, directly applicable to the compounding and
resolving of accelerations.

25. Hodograph —If a body move in any path, its velocity at
any instant, both as to direction and magnitude, can be con-
veniently represented by a vector drawn from a fixed point ; the
curve formed by the ends of such vector is called the 4odograph
of the motion.

26. Uniform Circular Motion.—The hodograph for uniform
circular motion can easily be found as follows :—When the
body is at A4 (fig. 11), its velocity is in the direction 4 A
From a fixed point
o (fig. 12) set off
oa equal and paral-
lelto 4 4. When
the body is at B its
velocity is repre-
sented by B B!,
equal in length to
A A' ; the corre-
sponding line o6
on the hodograph
(fig. 12) isequaland
parallel to B B'. Repeating this construction for a number of
positions of the moving body, it is seen that the hodograph a 4 ¢
is a circle.

Since the direction of motion changes from instant to instant,
the moving body must be subjected to an acceleration, which
can be determined as follows :—When the body is at 4, its
velocity is represented by ¢ a, and when at B by 0 4 ; therefore, in
the interval of passing from 4 to B an additional velocity, repre-
sented by a 4, has been impressed on it. If the point B be taken

Fic. 11 Fic. 12.
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very close to 4, i.e. if a very short interval of time be taken,
4 will be very close to a, and therefore a 4, the direction of the
impressed velocity, will be parallel to 4 O, /.. directed towards
the centre of rotation. If the interval of time is taken suffi-
ciently small, the additional velocity a 4 is also very small, and
the resultant velocity o 4 does not sensibly differ in magnitude
from oa; thus the only effect of the additional velocity is to
change the direction of motion from o a to ¢ 4 (fig. 12).
When at /2 suppose the body to undergo the same operation,
at the end of it the direction of the motion will be o0 ¢. After a
number of such operations the body will be at D (fig. 11), and its
velocity will be represented by o 2 (fig. 12). The total additional
velocity imparted to it between the positions 4 and D has only
had the effect of changing the direction, but not the magnitude
of its velocity. This total additional velocity is represented by
the arc a d.
Now, suppose the body to take one second to pass from A4 to
D, then a J represents the increase of velocity in unit of time, and
is, therefore, numerically equal to the acceleration a. Let 22 be
the linear speed of the body, and » the radius of the circle in
which it moves ; then the arc 4 D is numerically equal to z, 0 a
is by definition equal to @, and since 02 and o 4 are respec-
tively parallel to the tangents at 4 and D, the angle a 0 4 is equal
to the angle A O D ; therefore,
a_ arcad _ arcAdD v
v radiusao  radius 40 »
-2
fe. a="

" (1)

That is, in uniform circular motion, the radial acceleration is

proportional to the square of the speed, and inversely propor-
tional to the radius.
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CHAPTER IV

KINEMATICS—PLANE MOTION

27. Definitiovs of Plane Motion.—If a body move in such
a manner that each point of it remains always in the same
plane, it is said to have plane motion. Plane motion can be
perfectly represented on a flat sheet of paper ; and, fortunately
for the engineer, most moving parts of machines have only plane
motion. In cycling mechanics there are more examples of
motion in three dimensions. The motion of the wheels as the
machine is moving in a curve and the motion of a ball in its
bearing are examples of non-plane motion.

Each particle of a body having plane motion will describe a
plane curve, which is called a point-path.

28. General Plane Motion of a Rigid Body.—The plane
motionof a rigid body may be—

(1) Simple transiation, without rotation. In this case any
straight line drawn on the rigid body always remains in the same
direction. The motion of the body will be completely determined
if that one point of it is known.

(2) Rotation about a fixed axis.—In this case the path of any
point is a circle of radius equal to the distance of the point from
the axis of rotation.

(3) Translation combined with a motion of rotation.—We
shall see later that in this case it is possible to represent the
motion af any instant by a rotation of the body about an axis
perpendicular to the plane of motion, the position of the axis,
however, changing from instant to instant.

If the paths of two points of a rigid body be known, the path
of any other point on the rigid body is determined. Let 4, 5,
and C (fig. 13) be three points rigidly connected, 4 moving on
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the curve a a, B on the curve 4. The path of the point C can
evidently be found as follows :—Let 4, be any position of the
point on the curve aa ;
the corresponding posi-
tion A, is found by draw-
ing an arc with centre
A, and radius 4 B,
cutting the curve 44 in
B,. With centres 4,
and B,, and radii 4 C
and B C respectively,
draw two arcs intersect-
ing at C,. Cwill be a
point on the path de-
scribed by C.

29. Instantaneous Centre.—Let 4 and B (fig. 13) be two
points of a rigid body, aa and 44 their respective point-paths.
In the position shown the direction of the motion of 4 is a
tangent at the point 4, to the curve aa. The point 4 may
therefore be considered to rotate about any point, m, lying on the
normal at 4, to the curve aa. For, if 4 be considered to rotate
either about m, or m,, the direction of the motion at the instant
is in either case the same tangent, 4, a,. In the same way,
since the tangent B, 4, is also the tangent to any circle through
B having its centre on the normal B, n,, the point B may be
considered to rotate about any point in the normal at B, to the
curve 64. If the normals 4, m, and B, n, intersegt at /, 4 and
B may be both considered to be rotating at the instant about the
centre /. No other point in the plane satisfies this condition,
7 is therefore called the instantancous centre cf rotation of the
rigid body. Every point on the rigid body is at the instant
rotating about the centre /, therefore the tangent at C, to the
point-path ¢ ¢ is at right angles to C, /.

30. Point-paths, Cycloidal Curves.—A few point-paths de-
scribed in simple mechanisms are of great importance in mechanics.
We will briefly notice the most important.

Cycloid.—1f a circle roll, without slipping, along a straight
line, the curve described by a point on its’circumference is called
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a ¢eloid. Let a circle roll along the straight line X X (fig. 14).
The curve described by the point C on its circumference can be
readily drawn as follows :—Divide the circumference of the circle
into a number of equal parts (twenty-four will be convenignt, as
this division can be effected by the use of the 45° and 60° set
squares), and number the divisions as shown. Through the
centre draw a straight line parallel to X X ; this will be the path
of the centre of the circle. Along this line mark off a number of
divisions, each equal in length to those on the circumference of
the circle, and number them correspondingly. When any point,

FiG. 14.

say 9, on the circumference of the circle is rolled into contact
with the line X X, the centre of the circle will be on the corre-
sponding point, 9, of the straight line. Draw the circle in this
position. The corresponding position Cy of C is evidently ob-
tained by projecting over from the point g of the circumference.
By repeating this process for each of the points of division, twenty-
four points on the cycloid will be obtained ; through these a fair
curve may be drawn freehand. The curve C, C C, shows one
portion of the cycloid. The point-path is a repetition, time after
time, of this curve.

Prolate and Curtate Cycloid.—The path described by a point,
D, inside the rolling circle is called a prolate cycloid. D, D D,
shows one complete portion of the curve. The method of draw-
ing it is exhibited in figure 14, and hardly requires any further
explanation.

The curve described by a point lying outside the rolling circle
is called a curtate cycloid. E, E E, (fig. 14) shows one complete
portion. )
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“

A point on the circumference of a bicycle wheel describes a
cycloid as the machine moves in a straight line. Any point on
the spokes, or any point on the crank, describes a prolate cycloid.

Epicycloid and Hypocycloid.-—1f one circle roll on the cir-
cumference of another, the curve described by a point on the
circumference of the rolling circle is called an epigclid or a
Aypocycloid, according as the rolling circle lies outside or inside
the fixed circle. These curves are of great importance in the
theory of toothed-wheels.

In figure 15, £ £ is an epicycloid and A A a hypocycloid, in
each of which the diameter of the rolling circle is one-third that of
the fixed circle. The method of draw-
ing these curves is similar to that of
drawing the cycloid, the only difference
being that the divisions along the path
of the centre of the rolling circle will
not be equal to those along the cir-
cumference of the rolling circle, but the
divisions along the fixed and rolling
circles will correspond.

A particular case occurs when the
diameter of the rolling circle is equal to the radius of the fixed

circle ; the hypocycloid in this case reduces to a straight line, a
diameter of the fixed circle.



CHAP, IV, Kinematics—Plane Motion 27

Epitrochoids and Hypotrochoids.—If the tracing point does not
lie on the circumference of the rolling circle, the curve traced is
called an epitrochoid or a hypotrockoid. Figures 16, 17, and 18
show some examples of epitrochoids and hypotrochoids.

Involute.—Let a string be wrapped round a circle and have a
pencil attached at some point ; as it is unwound from the circle

P

Fic. 18. FiG. 19.

the pencil will describe a curve on the paper, called an involute
(fig. 19). This curve is also of great importance in the theory ot
toothed-wheels.

The involute is a particular case of an epicycloid. If the
rolling circle be of infinitely great radius its circumference will
become a straight line. The curve traced out by a point P(fig. 19)
of a straight line, which rolls without slipping on a circle, is an
involute.

31. Point-paths in Link Mechanisms.—We have already
shown how to find the path described
by any point of a rigid body of
which two point-paths are known. If P
the paths @ @ and 44 (fig. 13) be cir-
cular arcs, the bar A B may be con- B8
sidered as the coupling link between
two cranks. The variety of curves
described by points rigidly connected FiG. zo.
to such a coupling link is very great ; some of them have been
of great practical use. Figure 20 shows a point-path described
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by a tracing point, Z, which does not lie on the axis of the link
A B.

In Singer’s ¢ Xtraordinary’ bicycle the motion given to the
pedal‘was such a curve. The mechanism and the path described
by the pedal are discussed in chapter xxix.

32. Speeds in Link Mechanisms.—If the speed of any point
in a mechanism be known, it will in general be possible to de-
termine that of any other point. In a four-link mechanism,
A4 B C D (fig. 21), in which C Disthe fixed link, the nature of the
motion will depend on the relative length of the links. If D 4
be the shortest, 4 B + D A be less
than CD + BC,and 4 B - DA
be greater than CD — B C, D A4
will rotate continuously, and C B os-
cillate. The speeds of points on the
lever C B are proportional to their
distances from the fixed centre of
rotation C; similarly for points on
the lever D 4. Now in any position
of the mechanism the link 4 B may
be considered to have a rotation about the instantaneous centre 7,
the point of intersection of 4 .D and CAB, produced if necessary; and
thus the linear speed of any point of the link is proportional toits dis-
tance from /. If the point 4 rotates with uniform speed, the point
B will oscillate in a circular arc with a variable speed. Let v, be the
uniform speed of 4, and », the corresponding speed of B. Then,
since the body 4 B is rotating at the instant about the centre Z,

v, 1A

v, 1B

Draw D¢ parallel to C B, meeting 4 B, produced if necessary,
ate. Then the triangles 4 De, A 7 B are similar, and therefore

FiG. a1

[A=DA
IB D¢’
v, _ De
and v,_D—A’
or 1),=7;-'ADC......(I)
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Now D A is constant whatever be the position of themechanism,
and therefore if #,, the speed of 4, be constant, the speed of the
point B is proportional to the intercept D e.

Mark off D falong D A equalto De. The length D fis thus
proportional to the speed of the point B when the crank D 4 isin
the corresponding position. If this construction be repeated for
all positions of the crank D 4, the locus of the point f will be the
polar curve of the speed of the point 5.

33. Speed of Kneejoint when Pedalling a Crank.—In
pedalling a crank-driven cycle, the motion of the leg from the hip

FiG. 22.

to the knee is one of oscillation about the hip-joint. If the ankle
be kept quite stiff during the motion, as, unfortunately, is too
often the case with beginners, the leg from the knee-joint down-
wards practically constitutes the coupling-link of a four-link
mechanism. The pedal-pin (fig. 22) rotating with uniform speed,
figure 23 shows the curve of speed of the knee-joint. It inay be
noticed that the maximum speed of the knee during the up-stroke
is less than during the down-stroke. Also, the point B is at the
upper end of its path when the pedal-pin is in the position 4,,
some considerable distance after the vertical position D A4, of the
crank ; while B is in its lowest position when the pedal pin is at
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A,. The angle 4, D A,, passed through by the crank during the
down-stroke of the knee is less than the angle passed through
during the up-stroke ; consequently, since the speed of the pedal-
pin is uniform, the average speed of the knee during the down-
stroke is less than during the up-stroke. If the rider can just
barely reach the pedal when at its lowest point, the speed of the
knee-joint is very great immediately before and after coming to
rest at the lowest point of its path.

34. Simple Harmonic Motion.—If 2 be a point moving
with uniform speed in a circle of radius » of which @ 6 is a
diameter, and P » be a perpendicular let fall on a & (fig. 24),
while 2 moves in the circle, the point p will move backwards and
forwards along the straight line @ 4. The point p is then said to
have simple harmonic motion. The motion of a point on a
vibrating string, and of a particle of air
in an organ-pipe when the simplest pos-
sible, is of this character. The speed of
p will vary with its varying position. At
any instant the velocity of the point P is
in the direction £ m, the tangent at 2.
Setting off v=_P m to scale along this line
it may be resolved into two components
P n and n m respectively parallel, and at

FiG. 2. right angles, to @ . The parallel com-
ponent P nis, of course, equal to the speed of the point p. If the
scale of » be taken such that P m is equal to 7, the triangles
Pmn and Pop are equal, and therefore P p is equal to P n.
That is, in any position of the point # moving along a 4 with simple
harmonic motion, its speed may be represented by the ordinate
# Pto the circle on a 4 as diameter.

If P moves uniformly in the circle, its acceleration is constant

2 . - -
in magnitude and equal to , and is in the direction of the radius
r

Po. The scale of acceleration may be chosen such that the
vector P o represents the acceleration of £, which may be decom-
posed into P p and p o respectively at right angles, and parallel to,
a b. The parallel component p o is, of course, equal to the
acceleration of the point p along a 4—that is, in simple harmonic
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motion the acceleration is proportional to the distance of the
moving point from the centre of its motion. If an ordinate p Q
be set off equal to o p, the locus of Q will be the acceleration
diagram of the motion ; this locus is a straight line 4 B passing
through o, the centre of the motion.

The motion of the knee-joint when pedalling approximates to
simple harmonic motion, the approximation being closer the
shorter the crank D A4 (fig. 22) is in comparison with the lever C 8
and connecting-link 4 B. If the motion were exactly simple har-
monic motion, the polar curve of speed of knee-joint (fig. 23)
would consist of two circles passing through D.

35. Resultant Plane Motion.— Resw/tant of Two Transla-
tions.—If a rigid body be subjected to two motions of translation
simultaneously, the resultant motion will evidently be a motion of
simple translation, which can be found by an application of the
parallelogram of velocities.

Resultant of Two Rotations about Parallel Axis.—Let a body
be subjected to two rotations, w, and w,, about the axes 4 and B

C:I B,
A c 8
FiG. a2s. Fi1G. 26.

(fig. 25). Ifthe motion be plane, the axes must be parallel, and at
right angles to the plane of the motion. Let 2 beany point in the
body. Join Pto A and B, and draw P a and P 4 at right angles
to £ A and P Brespectively. The resultantlinear velocity of Pwill
be the resultant of the velocity w, x 4 Pin the direction 2 a, and
of wy X B Pin the direction 4. If Paand P4 be marked off
respectively equal to these velocities to any convenient scale,
the resultant 2 ¢ can be found by the parallelogram of velocities.

From P draw a perpendicular 2 Q on the line, produced if
necessary, joining the centres 4 and 5. Draw a &' and 4 ' per-
pendicular to Q. Then,the velocity of 2 due to the rotation w,
about .4 may be resolved into the velocity a' a parallel to, and the
velocity 2 a' at right angles to, 4 B. Similarly, the velocity of 2
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due to the rotation w, about B may be resolved into the two
components P 4! and 8' 4. The triangles 4 Q 2P and P a! a are
similar ; so, also, are the triangles B Q Pand P4' 4. It is, there-
fore, easy to show that the components of s velocity due to w,,
at right angles, and parallel, to 4 B, are respectively (w, x 4 Q) and
(wy X Q P). _Similarly, the components due to w, are (w, x B Q)
and (wox Q P). Therefore, the components of Ps resultant
velocity at right angles, and parallel, to 4 B are respectively : —

1 =(w,; x4 Q)+ (v, xB Q) . . . . (2)
and
1}2=('0'2 + U]) P Q e e e e e e (3)

Let C be a point on the straight line 4 B, dividing it in the
inverse ratio of the angular speeds w, and w,, then

A C_ (i)g
CB™ w
and
AC=—"-dAB CH= "24E
w1ty Wy T Wy

Substituting 4 Q=4 C+C Q, and B Q=C Q—C B in (2), it
is easily deduced that

n=@+w)CQ . . (8

From (3) and (4) it is evident that the resultant velocity of 2
is (v, + w,) C P. That is, any point 2, and therefore the whole
body, is rotating with angular speed equal to the sum of the
component angular speeds, about a parallel axis in the same
plane, and distant from the axis of the component rotations
inversely as the component angular speeds.

The above result can be more simply attained by an applica-
tion of the principle of ‘addition of vectors.” Let p be the vector
A P, from the axis 4 to any point 2 of the rotating body, and
let a be the vector 4 B. Then P a is a vector of magnitude o, p,
at right angles to p; B /P is the vector (p —a); and Pb is a
vector of magnitude wy(p — a), at right angles to (p — a).
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Vector P¢ = vector Pa + vector Pb
’ = wip + wy(p — )
= (0; + @3)p — w2
= (0 + o) (P— G2 “)

w) + W,y
= (0 + w) b= 40)
= (v, + ;) C A, and at right angles to C P.

That is, any point /7 rotates about the axis C (where
A C:CB = uw,: w)) with angular speed equal to the sum of the
component angular speeds.

Let figure 26 be a view of the body taken in a direction at
right angles to that of figure 25, 4 B now representing the plane
of the motion. The rotation »; may be represented by a line
A A, at right angles to 4 B, its length representing, to some
scale, the magnitude of the rotation w,. In the same way B 5,
may represent the rotation w,. The resultant rotation, C C, is
equal to the sum of the rotations w, and w,, and takes place about
an axis whose distances from 4 and B are inversely proportional
to the rotations v, and w,.

Thus, rotations about parallel axes can be represented in the
same way as parallel forces, and their resultant found by the
methods used to find the resultant of parallel forces (see
chapter vi.).

Example.—Find the instantaneous centre of rotation of the
crank of a front-driver geared two to one. Let 2 be the
number of revolutions the cranks make in a
minute, the wheel makes 2 » revolutions,
and the crank must make » revolutions
backward relative to the wheel—/.c. makes
— n revolutions per minute. The crank’s
motion may be considered as the resultant
of a rotation 2 # about B, the point of
contact of the wheel with the ground, and
a rotation — » about the wheel centre A4
(fig. 27).  Applying the preceding results, the instantaneous centre
is on the line 4 B, and

D
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AC_ 2 n_

CB- —a~- "%
That is, AC=—-2CB
or AC=2BC=2A4B8.

The motion of the cranks relative to the ground is, therefore,
the same as if they were fixed to a wheel twice the size of the
driving-wheel, and running on a flat surface below the ground.

Translation and Rotation—Let a body be subjected to a
rotation , about an axis A (fig. 25), and to a translation with
velocity o in a direction f,f in the same plane as that of the
motion. From A4 draw A4f at right angles to ff,. Let Pbe
any point on the body. From P draw P Q at right angles to
Af  Then proceeding as before, the components of P's resultant
velocity at right angles and parallel to A f are respectively

n=(wxA4AQ —-2. . . . . . . . . (5)
=0, xQP . . . . . . . . . .. (6

Let Cbea point on A f such that (v, x 4 C) =v ; then (5)
becomes

=0, X(AQ—AC) =0, xCQ . . . (1

By comparing (6) and (7), it is evident that the resultant
velocity of 2 is one of rotation about the centre C with angular
velocity w,. Thus, the resultant of a rotation and a translation is
a rotation of the same magnitude about a parallel axis, the plane
of the two axes being at right angles to the direction of transla-
tion.

LExample.—A cycle wheel, relative to the frame, has a motion
of rotation about the axle ; the frame, and therefore the axle, has
a motion of translation. The instantaneous motion of the wheel
is the resultant of these two motions. The resultant axis of rota.
tion of the wheel is the point of contact with the ground.

36. Simple Cases of Relative Motion of Two Bodies im
Contact.—In the theory of bearings it is important to know the
relative motion of the portions of two bodics in the immediate
neighbourhood of the point of contact, the motion of the bodies
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being such that they remain always in contact. Before discussing
the general case we will notice a few simpler examples. It will
be convenient to consider one of the bodies as fixed, we will
then have to speak only of the motion of one of the bodies ; this
may be done without in any way altering the relative motion.

Sliding.—1f the motion of the body can be expressed as a
simple translation, sliding’ is said to take place at the point of
contact. With this definition, pure sliding can only exist con-
tinuously when the surface of either the fixed or moving body is
cylindrical ; the elements of the surfaces at the point of contact
will constitute a ‘sliding pair’ An example is afforded by the
motion of a pump-plunger in its barrel.

Rolling.—If the instantaneous axis of rotation passes through,
and lies in the tangent plane at, the point of contact of the fixed
and moving bodies, the motion is said to be ‘rolling’; the
rolling is therefore the same as the relative rotation. At the
point of contact of a wheel rolling along the ground, the motion
is pure rolling. The position of the instantaneous axis con-
tinually changes ; but in plane motion it always preserves the
same direction.

Spinning.—If the instantaneous axis of rotation passes
through, and it is at right angles to the tangent plane at, the
point of contact, the motion is similar to the spinning of a top,
and may be called spinning. An example of pure spinning is
found at the centre of a pivot-bearing.

Rubbing.--In aturning pair, the motion can be expressed as a
simple rotation about the axis of the pair. For example, the
motion of a shaft of radius » in a plain cylin-
drical bearing is a rotation, w, about the centre
o of the bearing (fig. 28). The motion can also 1 4
be expressed as an equal rotation, w, about a - LT
parallel axis through 2, a point on the surface
of the bearing, and a translation with speed

= o 7 in the direction P 7" at rightangles to O 2. The motion at

£ is kinematically more complex than ¢sliding,’ as above defined,

and yet there is nothing of what is commonly understood as

rolling ; we may give it the name rubbing. Thus, rubbing at

any point on the surface of contact of a cylindrical shaft of radius
D2

7

FiG. 28.
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7 is equivalent to a translation » and a rotation ? about an axis,
r

parallel to that of the shaft, passing through the point in question.

More generally, let 4 and B be two bodies in contact at the
point 2 (fig. 29), let 7, and 7, be their respective radii of curva-
ture at P, and let 7 be the instantaneous axis of rotation of
angular speed w. 7/ must lie on the common normal at /7, since
the bodies remain in contact during the motion. Suppose A4
fixed, and that the same point of the body B rubs along A4 with
speed V for at least two consecutive instants. The motion of B
on 4 may then be said to be pure rubbing. In this case 7 must

b I
P
£ X vb
A 1 A 13w
Fic. 29. FiG. 30.

evidently coincide with the centre of curvature of the body 4 at
the point 2 ; then U, the rubbing of B on A4, takes place with
speed, V, = w7, and is therefore equivalent to a translation
V, and a rotation I—/", or

a
7

prend In
U,,__I/:,and-ra. Y ()
Similarly, if the position of 7 be such that the same point of 4
rubs on B for at least two consecutive instants,

U=v,and D0 (9)

%y
37. Combined Rolling and Rubbing.—In figure 29 let 4 be
fixed, and let the motion of the body B be kinematically a
translation /, =V, and a rotation w, = o about the point of
contact . The motion at 2 is compounded of rubbing and
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rolling. The rubbing has already been defined ; R,, the rolling
of B on 4, will be the total motion less the rubbing, r.e.—

R,=(V,and »,) — (V,,and I::)

Ve _V
=0, — ’a—w PR (10)

In using the formula (10) the positive directions of the axis
of w, of 7, and of ¥V, should be taken so that, in the order
named, they form a right-handed system of rectangular axes.
That is, looking along the positive direction of the axis of o, a
positive rotation, o, will appear clock-wise, and the positive direc-
tion of ~ it rotated a right angle in the positive direction of w, will
come into the positive direction of /. 7, and 7, may be taken
positive for convex surfaces, negative for concave surfaces. The
positive directions of w,, 7, and ¥, are shown in figure 29.

In figure 30 let the relative motion of the bodies be exactly the
same as in figure 29, but let B be fixed. Then /} and w, will be
oppositely directed in space to ¥, and w, respectively. But with
the above conventions as to positive directions, taking 7, positive,
V, will be positive and equal to 7, w, will be negative and equal
to — w. Therefore

R, =w, — I:i’:—w-rb e e e e e e (1)

From formula (10) and (r11) it is seen that when rolling and
rubbing combined take place, the ‘rollings’
of the two bodies are not reciprocal. The
actions at the points of contact in the two
bodies are not reciprocal, as may be illus-
trated by a few examples.

Lxample I.—Let the bodies 4 and B bea 7
plane and cylinder of radius » respectively, in Fic. 31
contact at £ (fig. 31). Let the instantaneous
axis of rotation coincide with the axis of the cylinder, and let w be
the angular speed of Brelative to 4. Thenat P:—r7, = ;r,=7r;
the speed of rubbing V=V, = - o ».
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Ei=uw—- =mw
"
R==m— Fo_ w 2T =c
r r

Tra: i5, the cylinder’s motivn on the plane is compounded of a
roSting of speed w 7. and a roiling of
angalar speed . The plane’s motion
on the cylinder is one of pare rubbing
with Spét'd @7

Examsz [l.—Let the bodies £ and
B be a circular bearing and shaft respec-

LR tively. of the same radius 7 (fig. 32), @
being the angular speed of the shaft. Then at £, 7, = — 7,/ =7,
V= V' = — w7, and

R‘=. —_ _;'_= - - -,A‘-_f=°
r -—r
R,:-—u— =-~-:’—'-=o.
r

‘Thus the definitions given in (10) and (11) of the magni-
tudes of the rollings of one bydy on the other are consistent
with our usual conceptions in these simple cases.
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CHAPTER V

KINEMATICS : MOTION IN THREE DIMENSIONS

38. Resultant of Translations.—If a body be subjected to a
number of translations in different directions in space, the re-
sultant velocity can be found by finding the resultant of any two
of the given translations, which resultant must evidently lie in the
same plane as the two given translations. The resultant of a
third given translation with the resultant of the first two can again
be found by the same method ; and so on for any number of
given translations. Thus the resultant of any number of transla-
tions in space is a motion of translation.

39. Resultant of Two Rotations about Intersecting Axes.—
Let the axes O 4 and O B of the rotations intersect at the point
O (fig. 33). The rotations w, and w, may be represented by the
length of the lines O 4 and O B respectively, and since rotations
are resolved and com-
pounded like forces, the
resultant rotation will be
represented by the dia-
gonal O C of the paral-
lelogram of which O 4
and O B are adjacent
sides. This proposition Fic. 33.
is called the parallelogram of rotations. In using this proposition,
attention must be paid to the sense of the rotation. The lengths
of the lines representing the magnitudes of the rotations must be
set off along the axes of the rotations in such directions that when
looking in the positive directions the motions both appear either
in watch-hand direction, or both in contra watch-hand direction.
In figure 33, the rotations are both in watch-hand direction ; the
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resultant rotation about the axis O C will therefore be in the
direction indicated by the arrow.

The above proposition is so important that a separate proof
depending on first principles will be instructive. Let O 4 and
O B be the axes of rotation, and let 2 be a point on the body
lying in the plane 4 O 8. Draw Pa and P4 perpendicular to
0O A4 and O B respectively. If P lie in the angle between the
positive directions O 4 and O B, the linear velocity of 2, which
is in a direction at right angles to the plane of the axes, will be

maP—w,bP . . . . .. (1)
If 2 lic on the axis of resultant rotation its velocity is zero, and
(3) becomes v, a P — w6 P= O,
w_bP
0, afF
Draw Pc¢ and Pd parallel respectively to O B and O 4, meeting
O A4 and O B at ¢ and & respectively.  Then, the triangles Pac
and P4 4 are similar, and therefore —

P _Pd_ Oc (2)

aP~ Pc 0d ~ " 7

or,

That is, O Pis the diagonal of a parallelogram whose adjacent

sides coincide with the direction of the axis of rotation, and are

of lengths respectively proportional to the component angular
velocities about these axes.

40. Rosultant of Two Rotations about Non-intersecting

. Axes.—Let 4 4 and

¢ B B (fig. 34) be the

two axes, and let g 4

£  be the common per-

D pendicular to 4 4

and B 5. Through

% draw a line CC

8 parallel to A4 A4.

¢ Then by section 3s,

F1G. 34. the rotation w, about

the axis 4 A4 is equivalent to an equal rotation about the axis C C,
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together with a translation in the direction %% at right angles
to the plane containing 4 4 and C C. The resultant of the rota-
tions about the axes B B and C C is, by section 39, a rotation
about an axis D D passing through 4. Thus, the given motion is
equivalent to a rotation about an axis D D, and a translation in
the direction 424 The translation in the direction %% may be
resolved into two components, 2/ along DD and /% at right
angles to D D. By section 33, the rotation about 2 D and the
translation in the direction /4 are equivalent to an equal rotation
about a parallel axis £ £. Thus, finally, the resultant motion is
a rotation about an axis £ £ and a translation in the direction of
that axis. Such a motion is called a screzv motion.

41. Most General Motion of a Rigid Body.—In the same
way it can be shown that the resultant of any number of transla-
tions and of any number of rotations about intersecting or non-
intersecting axes may be reduced to a rotation about an axis and
a translation in the direction of that axis. If a common screw
bolt be fixed and its nut be moved, the motion imparted is of
this character. The motion of the nut can be specified by giving
the pitck of the screw and its angular speed of rotation about
its axis. In the same way, the motion of a rigid body at any
instant can be expressed by specifying the axis and pitch of its
screw, and its angular speed.

42. Most General Motion of Two Bodies in Contact.—We
have seen that the most general motion of a rigid body can be
resolved into a rotation w and a translation z in the direction of
the axis of rotation. Also that a rotation about any axis is
equivalent to an equal rotation about a parallel axis through any
point, together with a translation at right angles to the plane of
the parallel axes. Hence, if two bodies move in contact, the
relative motion at any point of contact can be resolved into a
translation, and a rotation about an axis passing through the point
of contact. The direction of the translation must be in the
tangent plane at the point ; since, if the two bodies move in con-
tact, there can be no component of the translation in the
direction of the normal.

Let figure 35 be a section of the two bodies 4 and B by a
plane, passing through the point of contact /, at right angles to
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the instantaneous axis of rotation 7Z. The body 4 may be con-
sidered fixed, the body B to have a rotation w round, and a
translation » along, 7Z If PJ be perpendicular to Z/, the
motion of B is equivalent to a rotation w about the axis Pa,
parallel to 77, together with a translation w. /2 along P4 at
right angles to the plane of PJZ and Pa, plus a translation o
along Pa. The resultant of these two translations is a translation
V along Pc. Pcmust lie in
the common tangent plane to
the surfaces at ~.

Let PV be the normal at
P, and Pd the intersection
of the tangent plane with the
plane containing PV and Pa.
Then, the rotation e about
P a can be resolved into rota-
tions w, and o, about PNV
and Pd respectively. Thus,
the motion at 2 consists of
translation with velocity V in
the direction ¢, a spinning,

FiG. 3. w,, about the normal PN,

and a rolling, w,, about the

axis P d lying in the tangent plane. Therefore the most general

relative maotion of two bodies in contact is compounded of
‘ rubbing,’ ¢ rolling,” and ¢ spinning.’

We have in the chapter on Plane Motion given examples of
the pure motions just mentioned. We shall see, in the chapter
on Bearings, that the motion of a ball on its path in the ordinary
form of adjustable bearing is compounded of rolling and
. spinning ; while, in some special ball-bearings, the motion at
the point of contact of a ball with its path is compounded of
rubbing, rolling, and spinning.
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CHAPTER VI

STATICS

43. Graphic Representation of Force.—lor the complete
specification of a force acting on a body, its direction, line of
application, and magnitude are required. A force can therefore
be represented comipletely by a straight line drawn on a diagram,
the length of the line representing to scale its magnitude, the
direction and position of the line giving the direction and positions
of application of the force. Thus a force can be represented by
a Jocalised vector.

44. Parallelogram of Forces.—When two or more forces
are applied at the same point, a single force can be found which
is equivalent to the original forces. This is called the resw/fant
force, and the original forces are called the components. If the
forces act in the same direction, the resultant is, of course, equal
to the sum of the component forces. If two forces act in opposite
directions, the resultant is the difference of the two. Generally, if
a number of forces act along a straight line, some in one direc-
tion, others in the opposite direction, the resultant of the whole
system is equal to the difference between the sum of the forces
acting in one direction and that of the forces acting in the
opposite direction.

Suppose two forces acting at a point in different directions
are represented by oae and o4 respectively (fig. 36), then it is
evident that some force such as o¢ in a direction between oa and
06 will be the resultant. The resultant o ¢ is found by completing
the parallelogram o a ¢4 and drawing the diagonal a ¢, exactly as
in the case of the parallelogram of velocities.

Want of space prevents a strict elementary mathematical
proof of this proposition, but it can be easily verified experi-
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mentally as follows : Fasten two pulleys, 4 and B (fig. 37), on a
wall, the pulleys turning with as little friction as possible on their
spindles. Take three cords jointed together at O with weights
W, W, Wj at their ends. Let the heaviest weight hang
vertically downwards from O, and let the other two cords be
passed over the pulleys 4 and B respectively. Then, if the
heaviest weight, /#;, underneath O be less than the sum of the
other two, the whole system will come to rest in some particular

FiG. 36. FiG. 37.

position. While in this position make a drawing on the wall of
the three cords meeting at 0. Produce the vertical cord upwards
to any point ¢, and from ¢ draw parallels ca and ¢4 to the other
two cords. It will be found on measurement that the lengths
O a, O b, and Oc are exactly proportional to the weights ¥}, ¥,
and ;. Thus the resultant of the forces along Oa and Oé is
given by the diagonal Oc¢ of the parallelogram whose sides
represent the component forces.

Example.—The crank spindle of a bicycle is pressed vertically
downwards by the rider witha force of 25 Ibs., while the horizontal
s pull of the chain is 50 lbs. What is

° So
> the magnitude and direction of the
s, resultant pressure on the bearing?
) Set off O 4 (fig. 38) vertically down-
A wards equal to 25 Ibs. and O B hori-
Fic. 3 € zontally equal to 50 lbs. Complete
e the parallelogram O A4 B C. The re-

sultant is equal in magnitude and direction to the diagonal O C,
which by measurement is found to be 55°9 lbs.

45. Triangle of Forces.—Suppose that in addition to the
two forces 0a and 0 4 (fig. 36) a third force, ¢ 0, acts at the point ;
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this third force being exactly equal, but opposite to, the resultant
of the two forces. If these three forces act simultaneously no
effect will be produced, and the body will remain at rest. ¢ is
equal and parallel to 0, and may therefore represent in magni-
tude and direction the force o a acting at 4. The three sides
0b, be, and co of the triangle 04¢, therefore, taken in order,
represent the three forces acting at the point and producing
equilibrium. The proposition of the parallelogram of forces
may therefore be put in the following form, which is often con-
venient :

If three forces act at a point and produce equilibrium they
can be represented in magnitude and direction by the three sides
of a triangle taken in order round the triangle. The converse
of this proposition is also true.

A very important proposition which can be deduced im-
mediately from the triangle of forces is, that if three forces act
on a body and produce equilibrium they must all act through
the same point.

46. Polygon of Forces.—Since forces acting at a point can
be represented by vectors, the resultant £ of a number of forces,

Fic. 39. FiG. 4o0.

a, b, ¢, d, and ¢, acting at the same point (fig. 39) can be found
by drawing a vector polygon (fig. 40) whose sides represent the
given forces ; the resultant vector R represents the resultant
force. If a force equal, but oppositely directed, to & acted at
the same point as the forces a, 4, ¢, 4, and ¢, they would be in
equilibrium. Therefore, if a number of forces acting at a point
are in equilibrium, they can be represented in magnitude and
direction by the sides of a polygon, taken in order round the
polygon. Conversely, if a number of forces acting at a point
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are represented in magnitude and direction by the sides of a
polygon taken in order, they are in equilibrium.

In the preceding paragraph it must be clearly understood
that the sides of the polygon represent the forces in magnitude
and direction, but not in position. Thus the sides of the polygon
a, b, ¢, d, ¢ (fig. 40) represent in magnitude and direction the five
forces acting at the same point. If a body were acted on by
forces represented by the sides of a polygon, in position as well
as in magnitude and direction, a turning motion would evidently
be imparted to it.

47. Resultant of any Number of Co-planar Forces.—The
resultant of any number of forces all lying in the same plane
acting on a rigid body, and which do not necessarily all act at
the same point, may be found by repeated applications of the
principle of the parallelogram of forces. The resultant R, of
any two of the given forces 7, and A, passes through the point
of intersection of the latter ; the resultant &; of &, and a third
force, P;, passes through the point of intersection of &, and 2; ;
and so on. This process is very tedious when a great number
of forces have to be dealt with. The following method is more
convenient :

Let figure 41 represent the position of the given forces, and
figure 42 the corresponding force-polygon 2, P, . .. The
resultan® R of all the given forces is evidently represented in
magnitude and direction by the line af forming the closing side
of the polygon ; for if a force of magnitude and direction fa
were added to the given forces, the resultant would be of zero
magnitude. It only remains thercfore to determine the position
of the resultant & on figure 41.

No difference will be made if two equal and opposite forces
be added to the system. We will add a force (, represented by
Oa in the force-polygon, which acts along any line a (fig. 41).
The resultant of Q and £, is O4 (fig. 42), and it passes through
21, the point of intersection of Q and /’, (fig. 41). Draw from
the point p, the line 4 parallel to O & (fig. 42), cutting the line of
action of Pyat p3. The resultant of Q, /°,, and 7, is O ¢ (fig. 42),
and it passes through p,. Draw from the point g, the line ¢
parallel to Oc¢ (fig. 42). Continuing this process, the resultant
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of Q, P, Py, Py, P,, and P; is Of (fig. 42), and acts through
the point p;. From p; draw the line f parallel to Of (fig. 42),

Fi1G. 41. FiG. 42.

cutting the line a, the line of action of the added force Q, at p,.
The resultant of Of and — Q is af= R (fig. 42), and it acts
through the point 2,.

The above construction may be expressed thus: Take any
pole O and from it draw radius vectors to the corners of the force-
polygon. Draw another polygon, which may be called the /in4-
polygon, having its corners g, p5 . . . on the lines of action of
the given forces P, P, , .. and having its sides a, 4, . . .
parallel to the radius vectors Oa, O6 . . . of the force-polygon ;
the sequence of sides and corners a, 2,, 4, p, . . . in the link-
polygon being the same as that of the corners and sides
a, P, b, P, ...of the force-polygon. The point of inter-
section of the first and last sides of the link-polygon determines
the position of the resultant X.

It is readily seen from the above, that if a system of forces
acting on a rigid body are in ¢quilibrium, both the force- and link-
polygons must be closed.
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48. Resolution of Porces.— A single force may be resolved
into two components in given lines which intersect on the line of
action of the given forcee. The principle of the parallelogram of

forces is, of course, used again here.
o 3 Let o ¢ (fiz. 43) be the given force
acting at o, and let its components in
the directions o a and ¢ 4 be required.
From ¢ draw ca and « 4 respectively
parallel to 40 and a0, meeting o a
and 0 4 in a and 4 respectively: oa
and o é are the required components
of the given force in the two given directions.

Example.—Given the vertical pressure on the hub of the
driving-wheel of a Safety bicycle, to find the forces acting along
the top and bottom forks, O 4 and O B
(fig. 44)-

Draw O ¢ vertical and equal to
the given pressure on the hub. This
is the direction and magnitude of the
force with which the wheel presses on
the hub spindle. From ¢ draw ¢ a
and ¢ 4 parallel to O B and 4 O
respectively, meeting O 4 and B O
produced in a and 4 respectively. oa
and o4 are the forces acting along the
top and bottom forks respectively. It

Fic. 4. will be seen that the top fork O 4 is
compressed and the bottom fork O B is in tension.

Resolution of a Force into Three Components in given Directions
and [lositions.—Iet R be a force whose components acting
along the given lines /%, /%, and /7’ (fig. 45) are required. Let
R and P, intersect at 4, /7, and P interscct at B, Then R may
be resolved into two forces acting along /7, and 4 B respectively,
the latter into two forces acting along 7, and 2 respectively.
‘The constructions necessary are indicated in fig. 46.

Any force, R, acting on a rigid body can be resolved into two,
one acting along a given line 2, the other passing through a
given point B. The latter force must pass through 4, the point
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of intersection of X and £,. The construction is clearly shown
in figures 45 and 46.

If the point of intersection A4
be inaccessible, as in figure 47, the
link-polygon method may be used
with advantage. In the force dia-
gram (fig. 48) set off a f equal to R
to any convenient scale, draw [/
parallel to /2. Commence the
link-polygon at B, by drawing the
side a parallel to the vector O q,
then draw the side f parallel to
the vector O f cutting the line of
action of P, at p,. The closing
side & of the link-polygon is the
straight line p, B. Draw the Fic. 4s. Fic. 46.
vector O 4 parallel to the side &
of the link-polygon, cutting the side 2, of the force triangle at 4.
The force 7, is represented in magnitude and direction by the

oo

Fic. 47. Fic. 48.

third side a4 ot the force triangle. Comparing with figures 41
and 42, the truth of the above construction is obvious.

49. Parallel Forces. -l.ct two parallel forces 2, and P, act
on a body (fig. 49). Required to find their resultant. It is
evident that the resultant force & is equal to the sum 2, +
P, ; the only element to be found is the point at which it acts.
Iet A B be a line in the body at right angles to the directions of
£, and P, and let C be the point at which the resultant & acts.

E
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Let another force, Q, equal and opposite to &, be applied to the
body ; then since it is equal and opposite to the resultant of 2,
and /7,, the body is in equilibrium under the action of the three
forces P,, Py, and Q. Consider the
moments of the forces about the point
C ; that of Q is zero, and, therefore,
the algebraic sum of the moments of
P, and P, must also be zero, since the
body is in equilibrium. Therefore,

- Fic. 4. Pyx CB=P xAC . (1)
that is, the point C divides 4 B into two parts inversely propor-
tionate to the forces 2, and 7.

If the forces P, and P2 acted in opposite directions (fig. 50),
paying attentlon to the sign of the moments, it is seen that the
point C will lie beyond 4, the point
of application of the larger force.
Here again

PaxCB=P xAC . (1)

The above is often referred to
as the principle of the lever. The
experimental verification is easy.

The resultant ofany number of parallel forces 2, P, ... .. can
be found by the method of figures 41 and 42 ; the force-polygon
(fig. 42) becoming in this case a straight line.

so. Mass-centre.—An important case of finding the resultant
of a number of parallel forces is finding the centre of gravity of
a body. The earth exerts an attraction on every part of the
body, and therefore the resultant force of gravity on the body is
the resultant of a great number of parallel forces.

Considering a body as made up of an indefinite number of
small particles of equal mass, the mass-centre of the body is a
point such that its distance from any plane is the mean distance
of all the particles from that plane. If the body is subjected to
gravitational attraction, every particle is acted on by a force, the
total force acting on the body is the resultant of all such forces,
The centre of gravity is a point at which the total mass of the
body may be considered to be concentrated, in considering its

Fi:. so.
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attraction by other bodies. When the attractions on the particles
of a body are proportional to their mass, as is practically the case
on the surface of the earth, the mass-centre and the centre of
gravity of a body are coincident.

If the density of the body is uniform, the mass centre will also
be the geometrical centre of figure ; in fact, it is the geometrical
centre of figure that is of importance in problems on mechanics.

The mass-centres for a few important cases may be given here.

Circular, Square, or Rectangular Disc.—If these discs be cut
out of metal plate of uniform thickness, it is evident that the
mass-centre will also be at the geometrical centre of the figure.

Triangle.—Let A B C (fig. 51) be a triangle, which we may
consider cut out of thin metal plate. Consider any narrow strip,
2 2, parallel to the side B C ; the
mass-centre p; of this strip is at
the middle of its length. Divid-
ing up the triangle into a number
of such slips, their mass-centres
will all lie on the line 4 g, joining
A to the middle point of 5 C.
In the same way, by dividing the
triangle up into a number of
strips parallel to 4 B, it may be
seen that the mass-centres of all the strips will lie on the line C¢
joining C, the middle point of 4 B. The mass-centre of the
whole triangle must lie somewhere on the line 4 a ; it must also
lie somewhere on the line Cc; O, the y a p 1, 3 y

Fic. s1.

point of intersection of these lines, is
therefore the mass-centre. It can easily
be proved that @ O is one-third of a 4,

and Co one-third of ¢ C. E ‘;\

Circular Arc.—Let A B (fig. 52) be R
a portion of a circular arc with centre O. '- E . ,
Consider the moment about any dia- X L R4
meter OX. let PP be a portion AP

of the arc so short that it does not Fic. 5.

sensibly differ from the straight line P A, and its length is

negligible in comparison with the radius. The mass may be
E2
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considered proportional to the length of the line, and we may
therefore say that the moment of P~ about O Xis PP x Pp, ;
Fp, being drawn perpendicular to O X ; and P Q being neg-
ligible compared with £ 4.

Draw }” } a tangen: to the circle and parallel to the axis O X ;
from ., £ £ and A project a, £, A and 4 on this tangent, the
projectors being at right angles to it. Draw 2 Q parallel to, and
£ Q at right angles to O.\| the two lines meeting at Q. Join
O F. Then, since the triangles 22 Q and O Pp, are similar,

rm_ro
PQ  Pp

Therefore, £ x PA=PPQx PO=pp x ppr—i.c. the
moment of the arc £/ about the axis OX is equal to the
moment of the straight line 4 A! about the same axis.

This holds for all the elements of which the arc 4 B may be
considered made up. Therefore. by sumnming the moments of
these clements we get the important result, that the moment of
the arc .4 A about the axis OX is equal to the moment of the
straight line a &, its projectiun on the tangent parallel to the axis.

If the arc under consideration be a semicircle of radius »,
and ¢ be its mass-centre, its length is =2, the length of its pro-
jection on the tangent is 2 7, and we get

rrx0G=z2rxr
Therefore oG="r . . . . . . . (2

Sector of a Circk. --The mass-centre of

a sector of a circle .1 7 (fig. 53) is found by
dividing it up into a number of smaller sectors,
O C B, the arc &7 € being so short as not to
difter sensibly from a straight line.  The sector
O C B may then be considered a triangle, its
mass-centre will be at a distance from O equal to
0 two-thirds O B. Thus, the mass-centres of the

Fui. 53 small sectors into which O .{ 7 can be divided

all lic on the arc a 4, whose radius is two-thirds that of the arc
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A B ; and therefore the mass-centre of the sector O 4 B is the
same as that of the arc a 4.
In particular, the centre of area included between a semi-

circle and its diameter is at a distance ;—' from the centre of the
T

circle.

s1. Couples.—If two parallel but opposite forces, 2, and 2,
(fig. 54), are also equal, their resultant is zero, they tend to turn
the body without giving it a motion of translation.
Two equal, parallel, but oppositely directed forces
constitute a couple, whose magnitude is measured
by the product P/ of one of the equal forces
into the perpendicular distance between their
lines of action. A couple may be regarded as
equivalent to a zero force acting at an infinite
distance ; with this point of view they form no
exception to the general case of finding the resultant of given
forces.

In the construction of figures 41 and 42, if the points @ and f
of the force-polygon coincide, the resultant of the given forces is
zero. If, in addition, the line gg p, is parallel to O g, the link-
polygon is also closed, and the given forces are in equilibrium.
If, however, g5 #, is not parallel to Oa, the
resultant of the given forces is a couple.

Let two parallel forces 2, and 27, (fig. 55),
each equal to 2, at a distance / apart, con-
stitute a couple. The sum of the moments
of the two forces about any point O in the P
plane of 2, and 2, distant x from A,, is !

Py(x+)—-Px=Pl; Fic. s5.

FiG. s4.

~Y

that is, the turning effect of a couple depends only on its moment
P/, and not on the position of its constituent forces relative to
the axis of turning. The axis of the couple is at right angles to
its plane.

Let a single force P act on a body at 4 (fig. 54). Introduce
at B two opposite forces 2, and /7, each equal to, and distant /
from, 2. No change in the condition of the body is effected by
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this procedure, since P, and 2, neutralise each other. But the
system of forces may now be expressed as a single force 2,
acting at B, together with a couple P/ formed by the forces P
and 7,. Thus, a force acting on a body at 4 is equivalent to an
equal force acting at B, together with a couple of transference P1.

A couple may be graphically represented by a vector parallel
to its axis—z.e. at right angles to its plane ; the length of the
vector being equal, to some scale, to the moment P/ of the
couple.

52. Stable, Unstable, and Neutral Equilibrium.—If a heavy
body be situated so that a vertical line through its mass-centre passes
within its base it is in equilibrium. If the vertical line through
the mass-centre fall outside the base, the body is not
in equilibrium, and will fall unless otherwise supported.
If a body, supported in such a way that it is free to
turn about an axis O (fig. 56), be left to itself it will
come torest in such a position that its mass-centre
G will be vertically underneath the axis of suspension
O. 1If the body be displaced slightly, so that its mass-
centre is moved to G', when left to itself it will
return to its original position. In fact, the forces
now acting on the body are, its weight acting downwards through
G', and the reaction at the support O acting vertically ; these
two forces form a couple evidently tending to restore the body

to its original position. In this case the body is said
to be in sfable equilibrium.

If now the body be placed with its mass-centre
above O (fig. 57), though in equilibrium, the smallest
displacement will move G sideways, and the body
will fall. The equilibrium in this case is said to be

FiG. 57. unstable.

If the mass-centre of the body coincide with
the axis of suspension, the body will remain at rest in any position,
and the equilibrium in this case is said to be neutral.

A body may have equilibrium of one kind in one direction,
and of another kind in another direction : thus a bicycle resting
on the ground in its usual position is in stable equilibrium in a
longitudinal direction, and is in unstable equilibrium in a trans-

Fic. s6.
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verse direction. A bicycle wheel resting on the ground is in
neutral equilibrium in a longitudinal direction, and in unstable
equilibrium in a transverse direction.

53. Resultant of any System of Forces.— Concurrent forces.—
If the given forces all pass through the same point, but do not
all lie in the same plane, the method of section 46 can be ex-
tended to them ; their resultant will be represented as before,
by the closing side of the vector-polygon, the only difference from
the case of coplanar forces being that the vector-polygon is no
longer plane. Thus, the resultant of a system of concurrent forces
is either zero or a single concurrent force.

Non-concurrent, non-planar forces.—Let P,, P,, . . . be the
given system of forces. Take any point O as origin and introduce
two opposite forces, p, and — p,, each equal and parallel to 2.
No change is made by this procedure, since g, and — g, neutralise
each other. The force P, is therefore equivalent to a single force
2 acting at O, and a couple of transference 2, /, ; /, being the
length of the perpendicular from O to P,, and the axis of the
couple being perpendicular to the plane of 2, and p,. Similarly,
2P, is equivalent to an equal and parallel force p, acting at O,
together with a couple of transference 2, /, ; and so on for all the
given forces. The resultant of the concurrent forces g, 8, . . .
is either zero or a single concurrent force, p. Since the couples
P 1, P/, .. . are vector quantities, their resultant is also a
similar vector quantity—z.e. a couple C. Hence the resultant of
any system of forces can be expressed as the sum of a single force
2 and a couple C.

The magnitude of p does not depend on the position of the
origin O, while that of C does. The couple C can be resolved
into two couples C and C’, having their axes respectively parallel
to, and at right angles to, the direction of . The resultant of p

and C"’ is a force p’, equal to, parallel to, and at a distance
in a direction at right angles to the plane of p and the axis C’

from, p. Thus, finally, the resultant of any system of forces can
be expressed as a single force 2’ and a couple C’’ having its axis

parallel to p'.
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CHAPTER VII

DYNAMICS—GENERAL PRINCIPLES

54. Laws of Motion.—In section 13 we have seen that the
measurement of force is closely associated with that of motion.
The general phenomena of force and motion have been summed
up by Newton in his well-known laws of motion :

I. Every body continues in its state of rest or of uniform
motion in a straight line, except in so far as it may be
compelled by applied forces to change that state.

II. Change of motion is proportional to the force applied,
and takes place in the direction in which the force acts.

III. The mutual actions of any two bodies are always equal
and oppositely directed in the same straight line ; or,
action and reaction are equal and opposite.

These laws apply to forces acting in the direction of the
motion, and also to forces acting in any other direction. A force
like the latter will alter the direction of the body’s motion, and
may, or may not, increase or diminish its spced. It follows from
Newton’s first law that any body moving in a curved path must
be continually acted on by some force so long as its motion in
the curved path continues.

55. Centrifugal Force.—An important case of motion, es-
pecially to engineers and mechanicians, is uniform motion in a
circle. If a stone at the end of a string be whirled round by
hand, the string is drawn tight and a pull is exerted on the hand.
This pull is called centrifugal force. At the other end the string -
exerts a’pull on the stone tending to pull it inwards towards the
hand. This pull is called the centripetal force, and it is the con-
tinual exercise of this force that gives the stone its circular path.
If this force ceased to act at any instant the stonc would continue
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its motion, neglecting the influence of gravity, in a straight line
in the direction it had at the instant the centripetal force ceased
to act.

The distinction between the two forces must be carefully kept
in mind. .

Every point on the rim of a rapidly rotating bicycle wheel is
acted on by a centripetal force which is supplied partially by the
tension of the spokes. If the speed of rotation gets abnormally
high, the centripetal force required to give the particles in the rim
their curvilinear motion may be so great that the strength of the
material is insufficient to transmit it, and the wheel bursts. The
flywheels of steam engines are often run so near the speed limited
by these considerations, that it is not uncommon for them to
burst under the action of the centrifugal stress.

Let m be the mass in lbs. of the body moving with speed v
feet per second in a circle of radius ». It has been shown (sec. 26)

2
that the radial acceleration « is 2. But if f be the radial force
7

acting, by section 14,

2 2
[ = ma= mrv poundals, or f = ’%7}7 Ibs. . . (1)

56. Work.—When a force acts on a body and produces
motion it is said to do work. If a force acts on a body at rest,
and no motion is produced, no work is done. The idea of
motion is essential to work. If a man support a load without
moving it, although he may become greatly fatigued, he cannot
be said to have done mechanical work. The load, as regards
its mechanical surroundings, might as well have been supported
by a table. If the applied force be constant throughout the
motion, the work done is measured by the product of the force
into the distance through which it acts. The practical unit of
work is the foot-pound, which is the work done in raising a weight
of one pound through a vertical distance of one foot.

It should be noted particularly that the idea of #me does not
enter into work ; the work done in raising one ton ten feet high
being the same whether a minute or a year be taken-to perform
it. In the same way, the work done by a cyclist in riding up a
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hill of a given height is the same whether he does it slowly or
quickly.

The work done in raising a body through a definite height is
quite independent of the manner or path of raising, neglecting
frictional resistance and considering only the work done against
gravity. The work a cyclist does against gravity in ascending a
hill of a certain height is quite independent of the gradient of the
road over which he travels.

Example.—Let the machine and rider weigh 200 lbs., then
the work done by the rider in rising 100 feet vertically is
20,000 foot-lbs. If the gradient of the road be known, this can
be calculated in another way, which, for the present purpose, is
roundabout but instructive. Consider an extreme gradient of
one vertical to two on the slope (fig. 58), the length of the hill
will be 200 feet. The work done in
ascending the hill may be estimated by
the product of the force required to
push the machine and rider up the hill,
into the length of the hill. The machine
and rider weigh 200 lbs. ; this force acts
vertically downwards, and can be re-
solved into two, one parallel to the
road’s surface, and one at right angles
to it. If Oa be set off equal to
200 Ibs., and the construction of section 48 be performed, it will
be found that the component 4 O required to push the machine
and rider up the hill is 100 ibs. The work done will be the
product of this force into the distance through which it acts,
200 feet ; the result, 20,000 foot-lbs., being the same as before.

This is only the work donc against gravity. In riding along
a level road there is no work done against gravity, any resistance
being made up of the rolling friction of the wheels on the road,
air resistance, and the friction of the bearings. These resistances
will remain, to all intents and purposcs, the same on an incline
ason alevel. The work done in riding along 200 feet of level
road would have to be added to the 20,000 foot-lbs. of work
done against gravity, in order to get the #oza/ work done by the
cyclist in ascending the hill.
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Generally, the work done by, or against, a force is the product
of the force into the projection on the direction of action of the
force of the path of the moving body. Thus, if a w—
body move from A4 to B, and be acted on by the force
/, which always retains the same direction, the work
done is £ A C; B C being perpendicular to 4 C
(fig. 59)-

The centripetal force acting on a body moving in a circle is
always at right angles to the direction of motion ; consequently
in this case the projection of the path is zero, and no work is
done.

In the Simpson lever-chain the pressure of the chain rollers
on the teeth of the hub sprocket wheel is at right angles to the
surface of the teeth, and consequently makes a considerable angle
with the direction of motion of the rollers. In this case, there-
fore, the projection 4 C (fig. 59), on the line of action of the
pressure, of the distance 4 B moved through, is very much less
than 4 B. The claims of its promoters virtually amount to saying
that the work done on the hub by the pull of the chainis f. 4 5,
whereas the correct value is f. 4C.

In driving a cycle up-hill, the work done against gravity by
the rider at each stroke of the pedal is the product of the total
weight and the vertical distance moved through during half a turn
of the crank axle. Let the gradient be x parts vertical in 100 on
the slope, D the diameter in inches to which the driving-wheel is
geared, and W the total weight of machine and rider in lbs.
The vertical distance passed through per stroke of pedal is

Fic. s9.

x =D
100 2

inches.

The work done per stroke of pedal is therefore
**D b inch-lbs.
200
=oo1309x D Wfoot-lbs. . . . . (2)

Table 1., on the following page, is calculated from equa-
tion (2).
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TAaBLE L.—WORK DONE IN FOOT-LBS. PER STROKE OF
PEDAL, IN RAISING 100 LBS. WEIGHT AGAINST GRAVITY.

Diameter, ' Gradient, parts in 100 |

B o P e
dvingwheel 1l 2 {3 4 105 6i7|8

Inches ! N I ‘ :

40 §5°24 10°47 . 1570 2094 26°18 31°41 - 4665 41°89 .

45 589 1178 17°67 23°56 29745 35°34 4123 47°12

50 6°55 1309 19632618 | 32723927 14797 * 52°36

55 720 14740 '21-60 2879|3600 | 4320 50739 | 57°59

| 60 786 157112356 3142 39'27 | 4712 | 5497 - 6283

. 65 8:51 1702.25'52 3404 42°54 | 51°05 | 59°56 | 68-08 ;

: 70 9'16 18-32 2749 3665 45'81|54°98 | 6414 7330

75 9'82 19°64 . 29'45 3927 4909 | §8-90 | 6872 | 7854

I 8o 1047 2094 " 31°41 4189 52°36 16283 7330 83 78

57. Power.—The rate of doing work is called the power of
an agent, and into its consideration time enters. The standard of
power used by engineers is the Aorse-power. Any agent which
performs 33,000 foot-lbs. of work in one minute is said to be
of 1 H.P. This, Watt’s estimate, is in excess of the average
power of a horse, but it has been retained as the unit of power for
engineering purposes. The average power of a man is about
onc-tenth that of a horse that is, equal to 3,300 foot-lbs. per
minute.

If 7”7 be the speed, in miles per hour, of a cyclist riding up a
gradient of x parts in 100, the vertical distance moved through in
one minute is

x V V x 5280 _

100 60

. 88 a V feet,

and the power expended is

‘88 x V IV foot-lbs. per minute. . . . . (3)

Table II. is calculated from equation (3).

58. Kinetic Energy.—-So far we have dealt with the work
done by a force which gives motion to a body against a steady
resistance, the specd of the body having no influence on the
question, further than it must be the same at the end as at the
beginning. If a body free to move be acted on by a force, the
work done will be expended in increasing its speed. The work is

4\
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TasLE II.—Work DoNEg, IN FooT-LBS. PER MINUTE, IN
PusHING 100 LBS. WEIGHT UP-HILL.

Slope, parts in 100 |

Speed.

» : .

bowr ox bz 3| als |6 | 7| 8

- : R
4 | 3521 704 ' 1056 | 1408 1760 2112 2464 | 2816
5 440 | 880 1320 | 1760 2200 2640 3080 | 3520
] ' | I

6 528 1056 | 1584 | 2112 2640 3168 | 3696 | 4224
7 616 | 1232 1848 | 2464 | 3080 3696 ' 4312 | 4928
8 704 | 1408 2112 | 2816 | 3520 4224 4928 | 5632
9 | 792 | 1584 2376 | 3168 | 3060 4752 ' 5544 | 6336
10 880 6160 | 7040

1760 ' 2640 | 3520 | 4400 5280 ,

968 ‘ 1936 | 2904 | 3872 ' 4840 ' 5808 | 6776 | 7744
| 1056 ! 2112 3168 | 4224 5280 ; 6336 | 7392 | 8448
13 | 1144 : 2288 3432 | 4576 - 5720 | 6864 « 8008 | 9152
1232 . 2464 3696 | 4928 | 6160 7392 . 8624 | 9856
15 1320 ' 2640 3960 | 5280 ' 6600 7920 9240 | 10560

| i
16 ' 1408 ' 2816 4224 | 5632 | 7040 8448 | 9856 | 11264
[ 17 11496 | 2992 4488 | 5984 * 7480 8976 | 10472 | 11968
18 1584 | 3168 4752 | 6336 | 7920 | 9504 11088 | 12672
! 19 , 1672 | 3344 5016 | 6688 | 8360 10032 - 11704 | 13376
' 20 | 1760 | 3520, 5280 | 7040 | 8800 , 10560 | 12320 | 14080

stored in the moving body, and can be restored in bringing the
body again to rest. This stored work is called &/netic energy.

59. Potential Energy.—Newton’s first law of motion expresses
the idea of permanence of motion of a body unless altered by
applied forces. If the speed of a body on which no force acts
remains constant, its kinetic energy must also remain constant.
If a body free to move is acted on by a force, the work done by
the force is stored up as kinetic energy. If work is done by
moving the body against the resistance of a force which is
constant in magnitude and direction, whatever be the direction
of motion, the work is expended in changing the position of the
body. For example, in raising a body from the ground, the
resistance overcome is its weight, which always acts vertically
downwards, whether the body be at rest or moving upwards or
downwards. 1f the body be lowered by suitable means to the
ground, the work done in raising it is again restored. The body
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at rest 1 certain heigh: above the ground possesses therefore an
amoun: of energy Gue 0 its positon : this is called potential energy.
If the Sody he aliowed to fall freely under the action of gravity,
at the insan: of reaching the ground it possesses no potential
energy. but kinetic enerzy due to its speed.  Its initial store of
potential energy has been all converted into kinetic energy.

6. Conservation of Energy.—The great principle of con-
servation of ensrgy is an assertion that energy cannot be created
or deswoved. This is one of the most comprehensive generalisa
tions tha: has been deduced from our observations of natural
phenomena.  Applied :0 the case of a body moving under the
action of force without any frictional resistance, it asserts that
the sum of the kinetic and potential energies is constant. A
cyclist riding down a short hill with his feet off the pedals and
not using the brake, will have a greater speed at the bottom than
at the top, part of the potential energy due to the high position at
the top of the hill being converted into kinetic energy at the
bottom. If another short hill of equal height has to be ascended
immediately, the kinetic encrgy at the bottom gets partially con-
verted into potential energy at the top ; the rider arriving at the
top of the second hill with the same speed as he left the first.
The friction of the air, tyres, and bearings has been neglected in
the above discussion. If the rider just work hard enough to over-
come these resistances as on a level road, the above statement
will be strictly true.

Applied to mechanism used to transmit and modify power, the
principle of the conservation of e¢nergy is sometimes quoted, ‘No
more work can be got out at one end of a machine than is put in
at the other.” The work got out will be exactly equal to that put
into the machine, provided the friction of the machine is zero,
an ideal state of things sometimes closely approached, but never
actually attained in practice. The chronic inventor of cycle
driving-gears might save himself a great deal of trouble by master-
ing this principle.

61. Frictional Resistance.—It is a matter of every-day ex-
perience that a moving body left to itself will ultimately come to
rest, thus apparently contradicting Newton’s first law. A flat
stone moved along the ground comes to rest very soon. If the
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stone be round, it may ‘roll along the ground a little longer, while
a bicycle wheel with pneumatic tyre set off with the same speed
will continue its motion for a still longer period. A wheel set
rapidly rotating on its axis will gradually come to rest. If the’
wheel be supported on ball-bearings, the motion may continue for
a considerable fraction of an hour, but ultimately the wheel will
come to rest. In all these cases there is a force in action
opposing the motion, the force of friction, which is always called
into play when two bodies move in contact with each other. The
amount of friction depends on the nature of the surfaces in con-
tact. The friction is very great with the flat stone sliding along
the ground, is less with the rolling stone, and still less with the
pneumatic-tyred wheel. The friction of a ball-bearing may be
reduced to a very small amount, but cannot be entirely abolished ;
the less the friction, the longer the motion persists. The air
also offers a considerable resistance to the motion, which varies
with the speed. If a wheel with ball-bearings could be set in
rapid rotation under a large bell-jar from which the air had been
exhausted by an air-pump, the motion of the wheel might persist
for several hours, and thus give a close approximation to an
experimental verification of Newton’s first law of motion. The
movement of the planets through space affords the best illustration
of the permanence of motion.

62. Heat.—The force of friction is thus seen to diminish the
kinetic energy of a moving body, while if the body move in a
horizontal plane, its potential energy remains the same throughout,
and energy is said to be dissipated. The energy dissipated is not
destroyed, but is converted into 4eat, the temperature of the
bodies in contact being raised by friction. Heat is a form of
energy, and the conversion of mechanical work by friction into
heat is a matter of every-day experience ; conversely, heat can be
converted into mechanical work. Steam engines, gas-engines,
and oil-engines are machines in which this conversion is effected.
Heat due to friction is energy in a form which cannot be utilised
in the machine in which it arises; hence popularly engineers
speak of the work /st in friction, such energy being in a useless
form.

In riding down-hill the potential energy of the machine and
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rider gets less ; if the speed remains the same, the kinetic energy
remains the same, and the potential energy is dissipated in the
form of heat. If a brake be used, the heat appears at the brake-
block and the wheel on which it rubs. If back-pedalling be em-
ployed, the same amount of heat is expended in heating the
muscles of the legs, though the other physiological actions going
on may be such as to render the detection or measurement of this
heat difficult.

Meckanical Equivalent of Heat.—The conversion of heat into
work, and work into heat, takes place at a certain definite rate.
780 foot-pounds of work are equivalent to one unit of heat ; the
unit of heat being the quantity of heat required to raise the
temperature of one pound of water one degree Fahrenheit. Thus,
in descending a hill 100 feet high, a rider and machine weighing
200 lbs. would convert 20,000 foot-lbs. of work into 2333° = 256
units of heat. If this could all be collected at the brake-block, it
would be sufficient to raise the temperature of one pound of water
25°6 degrees.
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CHAPTER VIII

DYNAMICS (continued).

63. Dynamics of a Particle.—A particle, an ideal conception
in the Science of Mechanics, is a heavy body of such small
dimensions that it may be considered a point. If a particle of
mass s initially at rest, but free to move, be acted on for time #
by a constant force £, we have seen (sec. 16) that the speed v
imparted is such that

ft=mo
or
=" 0oL )
7
f=ma . . . . . . . . (2)
a being the acceleration, or rate of change of speed, 7 v is the

mv

momentum acquired in time 4 hence is the momentum ac-

quired in unit of time, and (1) is equivalent to defining force as
‘ rate of change of momentum.’

Let s be the distance traversed in the time ¢; then since the
average speed is half the speed at the end of the period,

s=3ot=4a2 . . . . . . (3
The work done during the period is /s, and
fs=loft=Ymo* . . . . . . (4)
If the particle has initially a speed v,, equations (1), (3) and (4)
become
ft=m@—1y) . . . . . . . (5
s=f@+w)t. . . . . . . (0

fs=im@P —o%) . . . . . . ()
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Ainctic Energy.—The work done by the force has been ex-
pended in giving the body its speed v, and the body in coming to
rest can restore exactly the same amount of work. The product
3 m v? is called the &inetic encrgy of the moving body ; it may be
denoted by the symbol Z.

‘The units employed above are all absolute units. The unit of
kinetic energy in (4) is the foot-poundal ; in foot-pounds the kinetic
energy is

E="7 . @®
2y

Falling Bodies—A body falling frecly under the action of
gravity is a special case of the above. Let the mass 7z be one
pound, the force acting on the body is 1 lb. weight, ie. g
poundals. Writing ¢ instead of £, and m=1, in equations (1)-(4)
the formulz for falling bodies are obtained.

64. Circular Motion of a Particle.—Let the particle be con-
strained to move in a circle of radius 7, and be acted on by a force
of constant magnitude f, which is always in the direction of the
tangent to the path of the particle ; then since the radial force
does no work, equations (1) to (7) still hold. Multiply both sides
of (1) by 7, then

/,~=’”f’ Y )
/7 is the moment of the applied foree about the axis of rotation,
m © is the momentum, m @ 7 the moment of momentum or angular
momentum ; hence the moment of a foree is equal to the rate of
change of angular momentum it produces.

If w be the angular speed and ¢ the angular acecleration of the

particle about the axis at the end of thetime 4,0 = w7, 0 = ;",

and (9) may be written
f,=""”’ff=,,,,2a I ¢ 1))

The product m 7% is the moment of incrtia of the particle about
the axis of rotation, and may be denoted by 75 (10) may then be

written
Sr=40 . . . . . . . (10)
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That is, the moment of the force is equal to the product of the
moment of inertia of the body on which it acts and the angular
acceleration it produces.
Equation (4) becomes, for this case,
e=fs=smvrt=§mrer=47i0* . . . (11)
That is, the kinetic energy of a particle moving in a circle is half
the product of its moment of inertia about the centre and the
square of its angular speed.
(9) may be written
ftr=movr=mrto=io . . . . (12)

f ¢t is the impulse of the force ; therefore the moment of the
impulse is equal to the product of the moment of inertia of the
particle and the angular speed produced by the impulse.

65. Rotation of a Lamina about a Fixed Axis Perpendicular
to its Plane.—A rigid body of homogeneous material may be
considered to be made up of a great number of particles, all of
cqual mass uniformly distributed. A rigid
lamina is a rigid body of uniform, but inde-
finitely small, thickness lying between two
parallel planes ; a flat sheet of thin paper is a
physical approximation to a lamina. lLet O
(fig. 60) be the fixed axis of rotation, perpen-
dicular to the plane of the paper; let 4 be
any particle of the lamina distant » from 0.
Then using the same notation, equations (9)
to (12) hold for the particle .4, the acting
force f being always at right angles to the
radius O +I. Now the rigid lamina may be
considercd made up of a number of heavy
particles like .1, embedded in a rigid weightless frame.  Instead
of the foree f acting directly at A, suppose a force p act at a
point /3 of the frame in a direction at right angles to O B. Let
O B =/, then if

pl=fr . . . . . . . (13)

the effects of the forces f and p in turning the weightless frame
and hceavy particle I about the centre O are exactly the same ;
the motiorPof A is unaltered by the substitution.

Fic. 6o.

Fa
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Also, if 4 be the space passed over during the period by the
point B,
s dr

d
7=;0r s_.l-’and
therefore
2! dr_
fs .7 pad.
Substituting in (10), (11) and (12) they may be written
pl=i6 . . . . . . . . 0 (13)

e=pd=3%ie* . . . . . . (15)
Plt=ite . . . . . . . . (16)

let 4, 4, . ... be the moments of inertia of the heavy
particles A4,, A, . ... of which the lamina is composed ; p,,
s - - - - the corresponding forces at the point B required to
give them their actual motions ; then for all the particles, (14), (15)
and (16), may be written

(pr+2:+ - - . )/=("|'+iz.+ - ..)e
(1 + 22+ - . )a’=.'_.(z|+.t._, N
(pr+L2+ - - - )t=@G+0L+ . 0 L o
/, t, 6 and o being the same for all the particles. Let 7 =
(w44, + . . . )then 7 is the moment of inertia of the

lamina about the axis O ; let (p, + g+ . . . ) = P then
/L’ is the actual force applied at the point 5 of the lamina ; let
(e, + e+ . . . )= F, then £ is the kinetic energy of the
lamina ; and the above cquations may be writien

rl=716 . . . . . . . . (17)
L = ,1,]0)2 e e e e e (18)
Pit=7lw . . . . . . . (19)

£’ 7 is the magnitude of the applied turning couple.

60. Pressure on the Fixed Axis.. -In the above investigation
the pressure on the axis at O has been neglected, since whatever
be its value, its moment about O is zero, and it does not, therefore,
influence the speed of rotation. 1t is, however, desirable to know
the pressure on the bearings of the rotating body ; we therefore
proceed to investigate it. Consider only the particle .4, connected
by the rigid weightless frame to B and O ; if the fofee pat B
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gives A its tangential acceleration, the weightless frame must press
on the particle 4 with a force f, in the direction at right-angles to
7, and the particle 4 must react on the frame with an equal and
opposite force — £ But the particle A4 also presses on the frame

with the centrifugal force ¢ = m’v = m w?7, in the direction of

the radius ».  The frame being weightless must be in equilibrium
under the forces acting on it ; since, by (2), a finite force, however
small, acting on a body of zero mass would produce infinite
acceleration. These forces are : — fat 4, p at B, the reaction ¢
of the axis at O, and the centrifugal force ¢, which also acts
through O. But the forces — fat 4, and p at B, are equivalent
to equal and parallel forces at O, and the couples — f» and g/
The couples cquilibrate each other, therefore the four forces
— /', 7', ¢ and c at O are in equilibrium. Therefore,

vector ¢ = vector f — vector p — vector¢c . . . (20)

et Q be the resultant reaction of the fixed axis on the lamina,
due to the particles A4,, 4,, . . . of which it is composed, i.e.—

vector Q = sum of vectors ¢,, ¢,
Similarly, let
vector /> = sum of vectors p,, p,

vector £ = sum of vectors £, f,
vector C = sum of vectors ¢,, ¢,, ¢3

Then, adding equations (20) for all the particles 4, A, . . .,

vector Q = vector & — vector 2— vector C . . (21)
But by (10) -
vector F=m@ x vector sum (r, + ro + . . . .)
And the vector sum (7, + 7, + . . . 7) isthevector . O G ;

(; being the mass-centre of the lamina (fig. 61), and # the number
of particles, each of mass s, it contains.
Therefore,

vector F=MO.0G . . . . . . . . . (22)

A being the total mass of the lamina.  The component forces £,
f2 - . . acting at right-angles to the corresponding vectors 7,
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7y . . ., the resultant force 7 will act at right angles to the re-
sultant vector O G. Similarly,
vector C=Mo*. 0G. . . . . . . . . . (23)
the force C acting along O G.
Now, from (13) and (10) p =f1r = 7@7;0

The vectors p are all in the same direction, at right angles to
O B, and are therefore added like scalars. Therefore,

vector P=3 x sum (m, 7 24myr? .. )= {-10 . (24)
Substituting thesc values in (21), the reaction Q (fig. 61) of
the fixed axis is the resultant of :—A force at O equaland parallel
to that required to accelerate the mass Af
supposed concentrated at G ; a force at O
equal, opposite and parallel to the applied
force 2 ; the centripetal force M. o?. O°G,
acting along G O.

I'rom (21) many important results can
be deduced. Let a couple act on a rigid
lamina quite free to move in its plane ; then
I’=o0, Q = o; and (21) becomes

FIG. 61. vector /' — vector C = o.

But the vectors # and — C are at right angles ; their sum can
only be zero when cach is zero. This is the case when O G = o
—see (22) and (23)—that is, when the mass-centre and the axis
of rotation coincide. Hence a couple applied to a lamina free to
move causes rotation about its mass-centre.

67. Dynamics of a Rigid Body.-- Equations (17), (18) and
(19) are applicable to the rotation of any rigid body about a fixed
axis. Equations (21) to (24) are applicable if the rigid body is
symmetrical about a plane perpendicular to the axis of rotation ;
this includes most cases occurring in practical engincering.  But
in a non-symmetrical body, e.g. a pair of bicycle cranks and their
axle, the resultant pressure on the bearings cannot be expressed
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as a single force, but is a couple. Thus, such a rigid body, if per-
fectly free, will turn about an axis, in general, not parallel to that
of the acting couple.

From (23), the centrifugal pressure on the fixed axis of any
rigid body is the same as if the whole mass were concentrated at
the mass-centre G. If the mass-centre lies on the axis of rotation,
the centrifugal pressure is zero. Hence the necessity of accu-
rately balancing rapidly revolving whecls. In this case also (21)
becomes Q = — 7, 7.e. the pressure on the bearing is equal and
parallel to the applied force, provided Q can be expressed as a
single force. If only a couple be applied, /2= o, and the pressure
on the bearings is zero. In a rapidly rotating wheel with hori-
zontal axis, 7 is the weight of the wheel ; with vertical axis 2= o,
the weight acting parallel to the axis.

The motion of a rigid body can be expressed (sec. 41) as
a translation of its mass-centre, and a rotation about an axis
passing through its mass-centre. Any applied force is equivalent
to an equal parallel force at the mass-centre and a couple of
transference. The rotation about the mass-centre is the effect of
this couple. Hence, the turning cffect of any system of forces
acting on a free rigid body is the same as if its mass-centre were
fixed. Since the resultant couple does not influence the motion
of the mass-centre, the motion of the mass-centre of a rigid body
under the action of any system of forces is the same as if equal
parallel forces were applied at the mass-centre.

The kinetic energy of any moving body is the sum of the
energy duc to the speed of its mass-centre, and the energy due
to its rotation about the mass-centre.

Moments of Inertia.—1f M be the total mass of a rigid body,
its moment of inertia may be expressed /= M#4A?; and £ is
called the radius of gyration. The Zabout an axis through the
mass-centre is least : let it be denoted by 7, ; that about any
parallel axis distant 4 is

I=L, + M. . . . . . . (25)

The values of 7 for a few forms may be given here. For a thin
ring of radius » and mass A rotating about its geometric axis,
/I, = M r2. ‘This is approximately the case of the rim and tyre of
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a bicycle wheel.  For the same ring rotating about an axis at its
circumference, as in rolling along the ground, 7 = 2 M2
For a bar of length / rotating about an axis through its end
2
perpendicular to its own axis, /= ME This is approximately
the case of the spokes of a bicycle wheel.
For a circular disc of uniform thickness and radius » rotating

about its geometric axis, /, = 11[2 7’ For the same disc rolling

along the ground, 7 = gM 7

68. Starting in a Cycle Race.—The work done by a rider at
the beginning of a race is nearly all expended in giving himself
and machine kinetic energy, the frictional resistances being small
until a high speed is attained. If the winning-post be passed at
top specd, the kinetic energy is practically not utilised. In a
short distance race, this kinetic energy may be large in comparison

to the energy employed in overcoming frictional resistances. The
kinetic energy of translation of the machine and rider is P_:;tf
foot-1bs., 1V being the total weight. Hence, a light machine,
other things being equal, is better than a heavy one for short races.
Further, there is the kinetic energy of rotation of the wheels and
cranks. For the rims and tyres this is nearly equal to their trans-
lational kinetic cnergy ; therefore, at starting a race, one pound in
the rim and tyres is cquivalent to two pounds in the frame. In
comparing racing machines for sprinting, the weight of the frame,
added to twice that of the rims and tyres, would give a better
standard than the weight of the complete machine. The pneu-
matic tyre, with its necessarily heavier rim, is, in this respect,
inferior to the old narrow solid tyre. Of course, once the top
speed is attained, the weight of the parts has no direct influence,
but only so far as it affects frictional resistances.

69. Impact and Collision.--If two bodies moving in opposite
dircctions  collide, their directions of motions are apparently
changed instantaneously ; but, as a matter of fact, the time during
which the bodies are in contact, though extremely short, is still
appreciable. The magnitude of the forcc required to generate
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velocity in a body, or to destroy velocity already existing, is in-
versely proportional to the time of action ; if the time of action
be very short, the acting force will be very large. Such forces
are called fmpulsive forces.

Now in the case of colliding bodies, such as a pair of billiard
balls, it is impossible either to measure for #; but the mass  of
one of the balls, and its velocities 7, and » before and after colli-
sion, may easily be measured. The expression on the right-hand
side of (5) denotes the increase of momentum of the body due to
the collision ; the product f # on the left-hand side is called the
impulse ; therefore, from (5), the impulse is equal to the change
of momentum it produces.

We shall now have to examine more minutely the nature of the
forces between two bodies in collision: At the instant that the
bodies first come into contact they are approaching each other
with a certain velocity. Suppose A (fig. 62)
to be moving to the right, and 7 to the left;
immediately they touch, the equal impulsive
forces f; and f, will be called into action,
and will oppose the motions of 4 and B
respectively. The parts of the bodies in the
neighbourhood of the place of contact will be flattened, and this
flattening will increase until the relative velocity of the bodies is
zero. The time over which this action extends is called the period
of compression. If the bodies are elastic, they will tend to recover
their original shapes, and will therefore still press against each
other ; the forces now tending to give the bodies a relative
velocity in the direction opposite to their original relative velocity.
These impulsive forces will be in action until the original shape
has been recovered and the bodies leave each other. The time
over which this action extends is called the period of restitution ;
and the total impulse may be conveniently divided into two parts,
the impulse of compression and the impulse of restitution.

Index of Elasticity.—Now it is an experimental fact that in
bodies of given matcrial the impulse of restitution bears a constant
ratio to the impulse of compression ; this ratio is called the /ndex
of elasticity. A perfectly elastic material has its index of elasticity
unity ; in an inelastic body the index of elasticity is zero ; if the

FiG. 62.
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index of elasticity lies between zero and unity, the body is imper-
fectly elastic. The index of elasticity e is, for balls of glass }§,
for balls of ivory &, and for balls of steel §. These are the values
given by Newton, to whom the theory of collision of bodies is duc.
Conservation of Momentum.— In figure 62, the force f, at any
instant acting on A is exactly equal to the force f, acting on B ;
the total impulse on A is therefore equal to the total impulse on
B ; and as they are in opposite dircctions their sum is zero. Thus,
the momentum of the system is the same after collision as before
it. This is true whether the bodies are inelastic, imperfectly
elastic, or perfectly elastic. If two bodies of mass m, and m,,
moving with velocities 7y’ and w,"” respectively, collide, their
velocities after collision can be easily determined, if the index of
elasticity ¢ is given. For cyclists, the most important case is
when one of the bodies is rigidly fixed ; in other words, when m,
is infinite and »,” zero. Let, as before, the mass of the finite
body be m, its velocities before and after collision with the
infinite body be 7, and z ; then before collision its momentum is
m v,. Let Cbe the impulse of compression ; then since at the
end of the compression period the velocity is zero, we get by
substitution in (1) :
C=muv,. . . . . . . . (26)
The impulse of restitution, by definition, is ¢ C ; therefore, if

2 be the velocity of the body after collision, we have

eC= —muo,
Substituting the value of C from (26), we get

v=—¢v . . . . . . . (27)

That is, the spced of rebound is equal to the speed of impact
multiplied by the index of elasticity. The speed of rebound is
therefore always less than the speed of impact.

This result at first sight scems to be contradictory to the prin-
ciple of the conservation of momentum, but remembering that the
mass of the fixed body may be considered infinite, and its velocity
zcro, its momentum is

oo X 0o,
an expression which may represent any finite magnitude. We
may say the fixed hody gains the momentum lost by the moving
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body by the collision. For example, when a ball falls vertically
and rebounds from the ground, the earth as a whole is displaced
by the collision.

Loss of Energy.—The kinetic energy of the moving body
before impact is

2
7 %7 foot-lbs. H
2g

the kinetic energy after impact is

2 2
ecmu,
E="% —pg, . . . . . (28)
2g

The loss of energy due to collision is thus
(1—e) Ly . . . . . . . .(29)

70. Gyroscope.—Let a wheel W (fig. 63), of moment of
inertia 7, be set in rapid rotation on a spindle S, which can be
balanced by means of a counterweight w, on a pivot support 7"
(fig. 63). If a couple C, formed by two equal and opposite
vertical forces /| and F, acting at a distance /, be applied to the
spindle, tending to make it turn about a horizontal axis, it is found
that the axis of the spindle turns slowly in a horizontal plane.
This motion is called °precession.” This phenomenon, which,

g )

t Y

Fic. 63. Fic. 64.

when observed for the first time, appears startling and paradoxical,
can be strikingly exhibited by removing the counterweight 7o, so
that statically the spindle is not balanced over its support. The
explanation depends on the composition of rotations. Figure 64
is a plan showing the initial direction O 4, of the axis of rotation
of the wheel 7. The initial angular momentum of the wheel
can be represented to any convenient scale by the length O A,.
The couple Ctends to give the wheel a rotation about the axis
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O B at right angles to O 4,. If this couple C acts for a very
short period of time, #,, the angular momentum it produces about
the axis O B is C#,. This may be represented to scale by O &,.
The resultant angular momentum of the wheel at the end of the
time, #,, may therefore be represented in magnitude and direction
by O A4'. If the time #, be taken very small, O 4' is practically
equal to O .1, and the only effect of the couple C is to alter the
direction of the axis of rotation. At the end of a second short
interval of time, 7,, it may be shown in the same manner that
the axis of rotation is O 4", A'A" being at right angles to O 4.
At the end of one second the increment of the angular momentum
is numerically equal to C, and may be represented by the arc
A, A, ; thus atthe end of one second the axis of rotation is O 4,.
I.et 6 be the angular speed of preccssion, then 6 is numerically
equal to the angle 4, 0 A4,, te.,

_arcdn4, _ C (30)
T radius04, Jo 3

or

C=lwb=MFwb
=Mvk6 . . . . . . . . .(31)

where M is the mass and 4 the radius of gyration of the wheel,
and o the linear speed of a point on the wheel at radius 4.

In drawing the diagram (fig. 64) care should be taken that
the quantities O 4yand O 4, arc marked off in the proper direction.
If the rotation of the wheel when viewed in the direction O A4,
appear clock-wise, it may be considered positive ; similarly, the
rotation which the couple C tends to produce, appears clock-wise
when measured in the direction O 4, and is therefore also con-
sidered positive.  If the couple C were of the opposite sign, the
increment of angular momentum O 4, would be set off in the
opposite direction, and the precession would also be in the oppo-
site direction.

The geometrical explanation of this phenomenon is almost the
same as that given for centrifugal force in the case of uniform
motion in a circle.

A cyclist can easily make an experiment on precession without
any special apparatus as follows : Dectach the front wheel from a

N
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bicycle, and, supporting the ends of the hub spindle between the
thumb and first fingers of each hand, set it in rotation by striking
the spokes with the second and third fingers of one hand. On
withdrawing one hand the wheel will not fall to the ground, as it
would do if at rest, but will slowly turn round, its axis moving in a
horizontal plane. As the speed of rotation gradually gets less
owing to friction of the air and bearings, the speed of precession
gets greater, until the wheel begins to wobble and ultimately falls.

71. Dynamics of any S8ystem of Bodies.—The forces acting
on any given system of bodies may be conveniently divided into
‘external ’ and ‘internal’ ; the former due to the action of bodies
external to the given system, the latter made up of the mutual
actions between the various pairs of bodies in the given system.
The latter forces are in equilibrium among themselves ; that is,
the force which any body 4 exerts on any other body B of the
system is equal and opposite to the force exerted by 5 on 4.
The motion of the mass-centre of the given system is therefore
unaffected by the internal forces, and some of the results of sec-
tion 67 can be extended to any system of bodies, thus :

. The motion of the mass-centre of a system of bodies under
the action of any system of forces is the same as if equal parallel
forces were applied at the mass-centre.

The turning effect of a system of forces acting on any system
of bodies is the same as if the mass-centre of the system were
fixed.

The kinetic energy of any system of bodies is the sum of the
kinetic energies due to : («) the total mass collected at, and
moving with the same speed as, the mass-centre of the system ;
(¢) the masses of the various bodies concentrated at their respec-
tive mass-centres, and moving round the mass-centre of the sys-
tem ; (¢) the rotations of the various bodies about their respective
mass-centres.

Example. 1f a retarding force be applied to the side wheel of
a tricycle, the diminution of speed is the same as if the force were
applied at the mass-centre of the machine and rider, while the
turning effect on the system is the same as if the machine were at
rest. (See chap. xviii.)
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CHAPTER IX

FRICTION

72. Smooth and Rough Bodies.—If two perfectly smootk bodies
are in contact, the mutual pressure is always in a direction at right
angles to the surface of contact. Thus a smooth stone resting on
the smooth frozen surface of a pond presses the ice vertically
downwards, and the reaction from the ice is vertically upwards.
If a horizontal force be applied to the stone it will move hori-
zontally, the mutual pressure between it and the ice offering little
resistance to this motion. A smooth surface may be defined as
one which offers no resistance to the motion of a body upon it.
No perfectly smooth surface exists in nature, but all are more or
less rough, and offer resistance to the motion of a body upon”
them. This resistance is called friction.

Friction always acts in the direction opposed to the motion of
a body, and thus tends to bring it to rest. In all machinery,
therefore, great efforts are made to reduce the friction of the
moving parts to the least possible value.  In bearings of machinery
friction is a most undesirable thing, but in other cases it may be
a most uscful agent.  Without friction, no nut would remain tight
after being screwed up on its bolt ; railways would be impossible ;
and in cycling, not only would it be impossible to ride a bicycle
upright on account of side-slip, but not even a tricycle could be
driven by its rider along the ground, as the driving-wheels would
simply skid.

73. Friction of Rest.- The greatest possible friction between
two bodies is measured by the force parallel to the surface of con-
tact which is just necessary to produce sliding.  If a force acting
parallel to the surface be less than this amount, the bodies will
remain at rest.
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It is found by experiment that friction varies with the nature
of the surfaces of contact; is proportional to the mutual nor-
mal pressure, and is independent of the area of the surface of
contact so long as the pressure remains the same. When
sliding motion actually takes place, the friction is often less
than when the bodies are at rest in a state just bordering on
motion.

74. Coeflicient of Friction.—Let 2 be the force perpendicular
to the surface of contact with which two bodies are pressed to-
gether, and # the force parallel to the surface which is just neces-
sary to make one slide on the other. Then, as stated above, it is
found experimentally that /7 is proportional to /. The ratio of
Fto Pis called the coefficient of friction for the particular surfaces
in contact ; this is usually denoted by the Greek letter p. The
coefficient of friction for iron on stone varics from -3 to *7 ; for
wood on wood from -3 to ‘5 ; for metal on metal from ‘15 to 25 ;
while for india-rubber on paper the author has observed values
greater than 1o

Angle of Friction.—If two bodies be pressed together with a
force 7’, makinganangle 6 with the normal to the surface, its com-
ponents 7,, perpendicular to, and /°,, parallel to, the surface can
£y
2,

)
ing will take place, but if j): be greater than g, sliding will occur.

be readily obtained by drawing. 1If~ ? be less than g, no slid-

The angle 6 at which sliding just occurs is called the angle o
friction.

If one of the bodies be an inclined plancand the other a body
of weight IV resting on it, the force /2 pressing them together is
vertical, and therefore inclined at an angle 0 to the normal to the
surface ; the angle € of the inclined plane at which the body will
first slide down is evidently the same as the angle of friction, and
is sometimes called the angle of repose.

75. Journal Frietion. —-It has been established by experiment
that the friction of two bodies sliding on cach other at moderate
speeds, under moderate pressures, and with the surfaces either
dry or very slightly lubricated, is independent of the speed of
sliding and of the arca of the surfaces of contact, and is simply
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proportional to the mutual pressure. The experiments on which
the laws of friction rest were made by Morin in 1831. With well-
lubricated surfaces, such as in the bearings of machinery, the laws
of friction approximate to those relating to the friction of fluids.
Mr. Tower made experiments, for the Institution of Mechanical
Engineers, on the friction of cylindrical journals, which showed
that when the lubrication of the bearing was perfect, the total
friction remained constant for all loads within certain limits.
The coefficient of friction is therefore inversely proportional to the
load. The total friction also varies directly as the square root of
the speed. The coefficient of friction may therefore be repre-
sented by a formula

;L=C‘\'./l)z} e e e e e e e e (I)

These experiments clearly show that with perfect lubrication the
journal does not actually touch the bearing, but floats on a thin
film of oil held between the two surfaces. The most perfect form
of lubrication is that in which the journal dips into a bath of oil.
The ascending surface drags with it a supply of oil, and so the
film between the journal and its bearing is constantly renewed.
If the lubrication is imperfect the coefficient of friction rises con-
siderably, the conditions approaching then those which hold with
regard to solids.

The journal experimented on was 4 in. diameter by 6 in. long.
With oil-bath lubrication, running at 200 revolutions per minute,
and with a total load on the journal of 12,500 lbs., the total
friction at the surface of the journal was 125 lbs., giving a coeffi-
cient of friction of ‘ooro. With a total load of 2,400 lbs. the total
friction at the surface of the journal was 132 lbs., giving a coeffi-
cient of friction of -0o05s.

76. Collar Friction.—T'he research committee of the Institu-
tion of Mechanical Engineers also carried out some experiments
on the friction of a collar bearing. The collar was a ring of mild
steel, 12 in. inside and 14 in. outside diameter, and bore against
gun-metal surfaces. The pressure per square inch which such a
bearing could safely carry was far less than in a cylindrical journal
the lowest cocfficient of friction was ‘031, corresponding to a
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pressure of go lbs. per square inch, and a speed of 50 revolutions
per minute. p was practically constant, its average value being
about ‘036.

The much higher coefficient of friction in a collar thanina
cylindrical bearing is no doubt due to the fact that a thin film of
oil cannot be held between the surfaces, and be continually
renewed.

77. Pivot Friction.- —The relative motion of the surfaces of
contact in a pivot bearing is one of rotation about an axis at right
angles to the common surface of contact. Let
figure 65 represent plan and clevation of a pivot
bearing, o being the axis of rotation and o the
angular speed. The linear speed of rubbing of
any point at a radius » from the centre will be
wr. Let IV be the total load on the pivot,
D its diameter, and R its radius. If we assume
the pressure to be uniformly distributed over
the surface of contact, the pressure per square
inch will be,

_4 W
r=

FiG. 6s.

The area of a ring of mean radius »and width #is 2 r » £ The
frictional resistance due to the pressure on this ring is 2 p7x 7/,
and the moment about the centre O is 2puw 7% p.  Summing
the moments for all the rings into which the bearing surface of
the pivot may be divided, thc moment of the frictional resistance

of the pivot is
2prﬂi3ﬁ=#lVD (2)
3 3 )

That is, the frictional resistance due to the load W may be sup-
posed to act at a distance from the centre of one-third the dia-
meter of the pivot.

If the diameter be very small, the average lincar speed of
rubbing, and therefore also the total work lost in friction, will
be small. The work lost in friction is converted into heat, and
the heat must be carried away as fast as it is generated, or the
temperature of the bearing will rise and the surface will seize.
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The pressure per square inch a bearing may safely carry will thus
depend on the quantity of heat generated per unit of surface, and
therefore on the speed of rubbing. This speed being small in
pivot bearings, they may safely work under greater pressure than
collar bearings.

It will be shown (chapter xxv.) that the motion of a ball in
a ball bearing is compounded of rolling and spinning. Rolling
friction is discussed in section 78.

Spinning friction of a ball on its path is analogous to pivot
friction, with the exception that the surfaces have contact only
at a point when no load is applied. When the
ball is pressed on its path by a force I (fig.
66) the surfaces in the immediate neighbour-
hood of the geomctrical point of contact o are
deformed, and contact takes place over an area
a o b The intensity of pressure is probably
greatest at o, and diminishes to zero at a and 4.
The frictional resistance thus ultimately depends
on the diameter of the ball, its hardness, the
ard i) radius of curvature of its path, the load I}V as
) well as the coefficient of friction. No experi-
ments on the spinning friction of balls have
been made, to the author's knowledge, though they would be of
great usc inarriving at a truc theory of ball-bearings.

78. Rolling Friction.—\When a cylindrical roller rolls on a
perfectly horizontal surface there is a resistance to its motion,
called rolling friction. Professor Oshorne Reynolds has investi-
gated the nature of rolling resistance, and he finds that it is due

to actual sliding of

c / the surfaces in con-
P Q.= tact. No material in

naturc is absolutely
rigid, so that the
roller will have an
arca of contact with

the surface on which it rolls, the extent of which will vary with
the material and with the curvature of the surfaces in contact,
Figure 67 shows what takes place when an iron roller rests on

FiG. 66.
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a flat thick sheet of india-rubber. The roller sinks into the
rubber and has contact with it from Cto D. Lines drawn on the
india-rubber originally parallel and equidistant are distorted as
shown. The motion of the roller being from the left to the right,
contact begins at D and ceases at C. The surface of the
rubber is depressed at 7’ the lowest point of the wheel, and is
bulged upwards in front of, and behind, the roller. The vertical
compression of the layers of the rubber below 2P causes them to
bulge laterally, whilst the extension vertically of the layers in
front of D causes them to get thinner laterally. This creates a
tendency to a creeping motion of the rubber along the roller.  If
the resistance to sliding friction between the surfaces be great, no
relative slipping may take place, but if the frictional resistance be
small, slipping will take place, and energy will be expended. ¢~
and /'~ limit the surfaces over which there is no slipping ; between
e rand D, and again between f7and C, there is no relative slipping.

This action is such as to cause the distance actually travelled
by a roller in one revolution to be different from the geometric
distance. Thus, an iron roller rolled about two per cent. less
per revolution when rolling on rubber than when rolling on
wood or iron. The following table shows the actual slipping of
a rubber tyre three-quarters of an inch thick, glued to a roller.

Distance -

. H Circumference | Amount of

; Nature of surface o rlr?::\lrl(fl?n'i?m of the ring alipping
| Steel bar . . 22°§5 in. 22°5 in. --0°0§ in.
? In;lcurnr:l)»hcr o. 156 in. (l.uckl 2255 ,, 225 ,, —o005 ,,
| Ditto (black- Icadcd) . . 22°55 ,, 225 ,, —-0°0§ ,,
' Ditto 0-o8 in. thick (clean) . = 225 ,, 225 ,, 00 ,,
i Ditto (black-Icaded) .. 22082, 22§ ,, —o0v02 ,,
Ditto 0-36 in. thick (clean) . 22°39 ,, 225 ,, o'1t ,,

* Ditto (black-leaded) . . 2242 ,, 22'5 ,, o008 ,,
Ditto 075 in. thick (clean) . 22°4 22°5 ,, ol
Ditto (black-leaded) . . 224 ,, . 225 ,, or ,,

With regard to the work lost in rolling friction, a little con-
sideration will show that a soft substance like rubber will waste
more work, and therefore have a greater rolling resistance than

a harder substance such as iron or steel.  Professor Osborne
G2
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Reynolds has shown that the rolling resistance of rubber is about
ten times that of iron. Experiments were made on a cast-iron
roller and plane surfaces of different materials, the plane being
inclined sufficiently to cause the roller to start from rest. The
following table shows the mean of results for various conditions
of surface and manner of starting, the figures tabulated giving the
vertical rise in five thousand parts horizontal.

Starts from rest Sl:;tmzndrﬁé::);he |
Nature of surface —_—— - = = —'i —- = Mean
Oiled Oiled
Clean bl.c'k |e§1'ed Clean lblaclk-le:;ed
Cast-iron . . 566 561 257 | 236 40§
Glass . . . 632 5'96 193 : 2°56 419
Bass . . .| 775 | 633 . zo7 | 2587 | 473
Boxwood . . | 100§ 925 I 571 | 234 | 709
India-rubber .| 3537 3875 - 3187 | 2800 | 3324
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CHAPTER X

STRAINING ACTION : TENSION AND COMPRESSION

79. Action and Reaction.—Newton’s third law of motion is
thus enunciated :

“To every action there is always an equal and contrary re-
action ; or, the mutual action of any two bodies are always equal,
and oppositely directed in the same straight line ; or, action and
reaction are equal and opposite.”

We have in the preceding chapters spoken of single forces,
but remembering that force can only be exerted by the mutual
action of two bodies, the truth of Newton’s third law is apparent.
If a rider press his saddle downwards with a force of 150 lbs., the
saddle presses him upwards with an equal force ; if he pull at his
handles, the handles exert an equal force on his hands in the
opposite direction. The passive forces thus called into existence
are quite as real as what are apparently more active forces. For
example, suppose a man to pull at the end of a rope with a force
of 100 lbs., the other end of which is fastened to a hook in a
wall, the hook exerts on the rope a contrary pull of 100 Ibs.
Suppose now that two men at opposite ends of the rope each
exert a pull of 100 lbs., the ‘active ’ pull of the second man in the
second case is exactly equivalent c
to the ¢ passive’ pull of the hook
in the first case.

The different forces must be
carefully distinguished in such
cases. Thus, in figure 68 the
force exerted by the rope on the hook in the wall is in the direc-
tion a, the force exerted by the hook on the rope is in the
direction 4, the pull exerted by the man on the end of the rope

A
< - <-l—p -
(4 1 II I. BZ
Fic. 68. ’
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is in the direction ¢, and the pull of the rope on the man is in
the direction 4. ‘

8o. Stress and Strain.--Consider the rope divided at C into
two parts, 4 and B. The part 4 will exert a pull in the direc-
tion #, on B, and similarly the part B will exert a pull in the
direction #, on 4. The two forces 7, and ¢, constitute a straining
action at C.

In the case of a rope the forces & and ¢ acting on its ends are

directed outwards, and the straining action is called a Zension.
° If a bar (fig. 69) be subjected
..a_.{jl'z).—t— to equal forces, a and 4, at its ends
' acting inwards, the straining action

Fic. 6. is called a compression.

In figures 68 and 69 the parts 4 and B tend to separate from
or approach each other in a direction at right angles to the
planc C. If the parts .4 and B tend to slide relative to each

. te
ﬁ?:
Fi.. go. Fic. 71.

other in the direction of the plane (fig. 70), the straining action
is called shearing.

If the parts .4 and B tend to rotate about an axis perpendi-
cular to the axis of the bar (fig. 71), the straining action is called
bending.

If the parts o1 and B tend to rotate in opposite directions

_ about the axis of the bar (fig. 72), the
A~ ! . straining action is called torsion.
L D ! B Compound straining actions con-
7 : 7 sisting of all or any of the simple
' straining actions may take place.

These straining actions are resisted
by the mutual action between the particles of the material, this
mutual action constituting the s¢ress at the point.

Tensile Stress.—If a bar be subjected to forces as in figure 68,
every transverse section throughout its length is subject to a fensile

C

FiG. 72.
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stress.  If P be the magnitude of the forces 4 and ¢ (fig. 68), and

A the area of the transverse section at C, the force acting on

each unit of transverse section—that is, the tensile stress per unit

of area—is
P
=~ . .. ... .00 (@

r=4 )

Compressive Stress.—In the same way, if the bar be subjected

to forces directed inwards (fig. 69), every transverse section of it

is subjected to a compressive stress. The compressive stress per
unit of area will also be in this case

/)=§.........(1)

81. Elasticity.—If a bar of unit area (fig. 73) be fixed at one
end, and subjected at the other end to a load, p, it is found that
its length is increased by a small quantity. If the
load does not exceed a certain limit, when it is re-
moved the bar recovers its original length. It is
found experimentally that with nearly all bodies,
metals especially, this increase in length, x, is propor-
tional to the load, and to the original length of the
bar, so that we may write

el

=2
E
or,
£=f.........(z)

where £ is a constant, the value of which depends — F'¢ 7%

on the nature of the material.  ‘The ratio of this elongation to the
original length —that is, the cxtension per unit of length—is
called the extensivn, and denoting it by ¢ we have

substituting in (2) we have

?_g
e_L.........(4)
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L is called the modulus of elasticity of the material. A general
idea of its nature may be had as follows : Conceive the material
to be infinitely strong, and to stretch under heavy loads at the
same rate as under small loads. Let the load be increased until
the change of length, x, is equal to /, the original length of the
bar. Substituting x =7 in (2) we have p = £. That is, the
modulus of elasticity is the stress which would be required to
extend the bar to twice its origina! length, provided it remained
perfectly elastic up to this limit.

The value of £ for cast iron varies from 14,000,000 to
23,000,000 lbs. per sq. in.; for wrought-iron bars, from
27,000,000 to 31,000,000 lbs. per sq. in. ; for steel plate 31,000,000
1bs. per sq. in. ; for cast steel, tempered, 36,000,000 Ibs. per sq. in.

Example.—The spokes of a wheel are No. 16 W.G., 12 inches
long ; the nipples are screwed up till the spokes are stretched
4o in. What is the pull on cach spoke ?

Taking £ = 36,000,000 lbs. per sq. in., and substituting in (2),
we get

1
[1X})

1

2 —ah

36,000,000 2

from which,
p = 30,000 Ibs. per sq. in.

A, the sectional area of cach spoke (Table XI1I., p. 346), is
‘00322 sq. in. ; 2, the total pull on the spoke, is p 4. There-
fore,

£> = 30,000 X ‘00322 = 96°6 lbs.

82. Work done in Stretching a Bar. - In scction 81 we have
found the stress, p, corresponding to an extension, .v, of a bar ; we
can now find the work done in stretching the bar. It will be con-
venient to draw a diagram to represent graphically the relation
between p and x.  Let A B, (fig. 74) be the bar, fixed at 4, and
let B, be the position of the lower end when subjected to no
load. Under the action of the load /7 let the lower end be
stretched into position 7, then By =x. Let BNV be drawn
at right angles to the axis of the bar, representing to any con-
venient scale the load 2. If these processes be repeated for a
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number of different values of 2, the locus of the point V will be
a straight line passing through B,, and the area of the triangle
By B N will represent the work done in

stretching the bar the distance B, B. There- 2
fore, A
Work done=32x . . . (5)

Substitute the valuc of x from (2) in (5),
and remembering that 7>= A4 p, we get

Work done = i: ‘/jl= f;: X volume of

~ thebar . . . . . . . (6)

Therefore the quantities of work done in B,
producing a given stress, p, on different bars
of the same material are proportional to the Bz
volumes of the bars. On bars of equal P
volume but of different materials the quan-
titics of work done in producing a given
stress, g, are inversely proportional to the moduli of elasticity.
The work done in stretching a given bar is proportional to the
square of the stress produced.

If the bar be tested up to its elastic limit, £, the work done is

I X volume of bar.

2 E

This gives a measure of the work that can be done on the bar

N

FiG. 724.

1
without permanently stretching it. The quantity 2! E depends only

on the matcrial, is called its modulus of resilience, and gives a
convenient measure of the value of the material for resisting im-
pact or shock.

Lxample. —The work done in stretching the spoke in the
example, section 81, is

3. X 966 x 1, =483 inch-1b. or ‘o4 foot-lb.
83. Framed Structures.—A framed structure is formed by

jointing together the ends of a number of bars by pins in such a
manner that there can be no relative motion of the bars without
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distorting one or more. If each bar be held at only two points,
and the external forces be applied at the pins, the stress on any
bar must be parallel to its axis, and there will be no bending. In
figure 75 let the external
forces #,, £, ... be ap-
plied at the pins 4,, 4, . . .
Let the frame be in equi-
librium under the forces, and
let 7, F, ... (fig. 76) be
the sides of the force-poly-
gon. If all the forces 4,
£, . . . be known, it will be
possible, in general, to find
the stress on each bar of the
frame by a few applications
of the principle of the force-
triangle. In a trussed beam
(e.¢- a bridge, roof, or bicycle
frame) the cxternal forces
are the loads carried by the
structure, whose magnitude
and lines of action are gene-
rally known, and the re-

z actions at the supports. If

Fe. 76 there arc two supports the
reactions can be determined by the methods of section 17, so that
they shall be in cquilibrium with the loads.

To find the stresses on the individual members of the frame
we begin by choosing a pin at which two bars mect and one
eaternal load acts : the magnitude and direction of the latter, and
the direction of the forces exerted by the bars on the pin, being
known, the force-triangle for the pin can be drawn.  Thus,
beginning at the pin 4, on which three forces (the external force
£, and the thrusts of the bars 4, 4, and 4, A4,) act, the force-
triangle can be at once drawn. Before proceeding with this
drawing it will be convenient to use the following notation : lLet
the spaces into which the bars divide the frame be denoted by a,
4, . . ., and the spaces between the external forces £, £, . . .

Fic. 7s.
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by 4, /, . . ., then the bar 4, 4, which divides the spaces a and
4 will be denoted by a 4, the stress on this bar will also be denoted
by @ 4 The force-triangle for the pin .4, at which point the
spaces a, 0 and 4 meet, is a 0 £ (fig. 76). Proceeding now to the
pin A4,, at which four forces act, the external force #; and “that
exerted by the bar a £ are known, and the direction of the forces
exerted by the bars @ 4 and 4 7 are known. Twosides,a 2and £/,
of the force-polygon for the pin A, are already drawn, the polygon
is completed by drawing a 4 and 7 4 (fig. 76) respectively, parallel
to the bars @ 4 and /4 (fig. 75). Proceeding now to the pin 4.,
only two forces are as yet unknown, and of the force-polygon two
sides, 6 / and / m, are already drawn. The remaining sides, 4 ¢
and m ¢, are drawn parallel to the corresponding bars (fig. 75).
At the pin A;, four of the forces acting are already known,
and the corresponding sides, # 0, 0 a, a 4, and 4 ¢, of the force-
polygon are already drawn. The side # ¢ of the force-diagram
must therefore be parallel to the corresponding bar of the
frame-diagram, and a check on the accuracy of the drawing is
obtained.

With the above notation, the letters 4, 4, . . . and F, F,

. may be suppressed.

Figure 75 is called the frame-diagram and figure 76 the
stress-diagram, or force-diagram. Inthe force-diagram, the polygon
of external forces is drawn in thick lines, and the direction of each
force is indicated by an arrow. From these arrows it will be easy
to determine whether the stress on any member of the frame is
tensile or compressive.

The total force on any member of a framed structure being
obtained, its sectional arca can be obtained at once by formula (1).

84. Thin Tubes subjected to Internal Pressure.--An im-
portant case of simple tension is that of a hollow cylinder subjected
to fluid pressure ; e.g. the internal shell of a stcam boiler, or the
pneumatic tyre of a cycle wheel. In long cylindrical boilers the
flat ends have to be made rigid in order to preserve their form
under internal pressure, while the cylindrical shell is in stable
equilibrium under the action of the internal pressure. A pneu-
matic tyre of circular section is also of stable form under internal
pressure ; a deformation by external pressure at any point will
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be removed as soon as the external pressure at the point be

removed.
et # be the internal pressure in lbs. per sq. in., 4 the diameter
and 7 the thickness of the tube (fig. 77). Consider a section by a
: plane, A A, passing through the

B axis of the tube. The upper
half, 4 B A, is under the action
l; B, of the internal pressure p, dis-

tributed over its inner surface,
A ([ 114 _lR_f + TN 4 andthe forces 7" due to the pull
' of the lower part of the tube ;
therefore 2 7" = the resultant
of pressure p on the half tube.
7 T This resultant can be easily
found by the following artifice :
Consider a stiff flat plate joined
at 4 A to the half tubc, so as to form a D tube. If this tube
be subjected to internal pressure, g, and to no external forces, it
must remain at rest ; if otherwise, we would obtain perpctual
motion. Thercfore, the resultant pressure £, on the curved part
must be equal and opposite to the resultant pressure &, on the
flat portion of the tube. 1If we consider a portion of the tube r in.
long in the direction of the axis,

R‘Z:Pdv

FiG. 77.

" and therefore
2 T=pd. . . . . . . . O

But if £ be the intensity of the tension on the sides of the tube,
T=/ft

. 2ft=;>d,0rf=f;1 R ¢))

Example.— A pneumatic tyre 1} in. inside diameter, outer cover
1% in. thick, is subjected to an air pressure of 30 lbs. per square
inch. The average tensile stress on the outer cover is

f= 30 x -‘;75 = 420 lbs. per sq. in.
2 X
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CHAPTER XI

STRAINING ACTIONS : BENDING

85. Introductory.—We have in chapter x. considered the
stresses on a bar acted on by forces parallel to its axis. We now
proceed to consider the stresses on a bar due to forces the lines
of action of which pass through the axis, but do not coincide with
it. Each force may be resolved into two components, respectively
parallel to, and at right angles to, the axis. The components
parallel to the axis may be treated as in the previous chapter. Of
the transverse forces, the simplest case is that in which they all lie
in the same plane, a beam supporting vertical loads being a
typical example. Such a beam must be acted on by at least
three forces, the /oad and the two reactions at the supports.

86. Shearing-force on a Beam.—If a bar in equilibrium be
acted on by three parallel forces at right angles to its axis (fig. 78),
every section by a plane parallel to the direction of the forces will
be subjected to a bending stress.

Consider the body divided into two portions by a plane at X.
Under the action of the force &, the part 4 will tend to move
upwards relative to the part B. The part A4 therefore acts on the
part B with a force R\’ equal and parallel to &£/, and the part B
reacts on the part 4 with an equal opposite force R,”. The two
forces R, and R,” at X constitute a shearing at the section. It
will easily be seen that the shearing-force will be the same for all
sections of the beam between the points of application of the
forces R, and I, and that the shearing-force on the section X,
will be the algebraic sum of the forces to the left-hand side, or to
the right-hand side, of the section. This'is true for a beam acted
on by any number of parallel forces. '

In particular, if a beam be supported at its ends (fig. 78) and
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loaded with a weight, /¥, the reactions &, and R, at the supports
will, by section 49, be equal to

bW aW

a+éd a+bd (1)

where a and /4 are the segments in which the length of the beam
is divided at the point of application of the load. The shearing-
force on the part 4 will be equal to R, and the shearing-force on
the part 3 will be equal to R, — IV = — R,.

Shearing-force Diagram.—The value of the shearing-force at
any scction of a beam is very conveniently represented by draw-
ing an ordinate of length
| RN | | equal to the shearing-
| l | force at the correspond-
k- a -
F- -

1. 78.

! . .
Py I SSN| Ing section, any conve-

2 L ik nient scale being chosen.
1 4 'F” 7] ! The shaded figure (fig.
|

2 79) is the shearing-force
(i diagram for a beam sup-
ported at the ends and
loaded with a single

weight.
The shearing-force at
the section X (fig. 78) is

[

of such a nature that the
part on the left-hand side
tends to slide wpwards
rclative to the part on the
right-hand side of the
/ R, section. The shearing-
force at .Y, is of such a
naturc that the part on
the left tends to slide downzeards relative to the part at the right
of the section. Thus shearing-forces may be opposite in sign ; if
that at X be called positive, that at X, will be ncgative. The
diagram (fig. 79) is drawn in accordance with this convention.

87. Bending-moment.—If a bar of length, 7, be fixed horizon-
tally into a wall (fig. 83), and be loaded at the other end with a

ﬁ/ T FiG. 8o.

FiG. 79.
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weight ¥, the said weight will tend to make bar turn at its sup-
port, the tendency being measured by the moment ¥/ of the
force. This tendency is resisted by the reaction of the wall on
the beam. The section of the beam at the support is said to be
subjected to a bending-moment of magnitude W/

From this definition a weight of solbs. at a distance of
20 inches will produce the same bending-moment as a weight of
100 Ibs. at a distance of 10 inches; the bending-moment being
50 X 20, OF 100 X 10 = 1000 inch-1bs.

Returning to the discussion of figure 78, it will be seen that
the part A is acted on by two equal, parallel, but opposite forces,
R, and R,", constituting a couple )

I

of moment R, x tending to turn Z I
the part 4. But the part A4 is TR
actually at rest ; it must, there- C; ™= ¢, .
fore be acted on by an equal and x I
. A & 8~
opposite couple. The only other ; )
forces acting on A arc those A ! 7 i
exerted by the part B at the sec- T - >t

tion X. The upper part of por- VAN AR
tion A (fig. 81, which is part of el
figurc 78 enlarged) acts on the
portion 4 with a number of forces, ¢, ¢, diminishing in intensity
from the top towards the middle of the beam ; the resultant of
thesc may be represented by C,: The lower part of B acts on
A with the forces ¢, #,, whose resultant may be represented by 7.
Since the part A is in equilibrium, the resultant of all the hori-
zontal forces acting on it must be zero ; therefore 7, and C, are
equal in magnitude, and constitute a couple which must be equal
to R, x. If 4 be the distance between 7', and C,, we must
therefore have

FiG. 81.

7,d=R, x.

The part A acts on the part 7 with forces ¢, at the top, and forces
¢, at the bottom of the beam ; the resultants being indicated by
C, and 7 respectively. The two sets of forces ¢, and ¢, consti-
tute a set of compressive stresses on the upper portion of the beam
at X, and the two sets of forces ¢, and 7, constitute a set of tensile
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stresses on the lower portion of the beam. The moment of the
couple R, x is called the bending-moment at the section X ; while
the moment of the couple 7} 4 is called the moment of resistance
of the section.
The existence of the shearing-force and bending-moment at
any section of a beam can be experimentally demonstrated by
2 actually cutting the beam, and re-
/ placing by suitably disposed fasten-
ings the molecular forces removed
by the cutting. Figure 82 shows

/% J diagrammatically a cantilever treated
25‘_“? =) 8 in this manner. The shearing-force
éc‘eﬁ_c at the section is replaced by the
///A | upward pull /¥ of a spiral spring,

and the couple acting on the part
B formed by the load /7] and the
pull of thc spring is balanced by the equal and opposite couple
formed by the pull 73 of the fastening bands at the top and the
thrust C, of the short strut at the bottom of the section.

Bending-moment Diagram.— The bending-moment at any
section of a beam can be conveniently represented by a diagram,
the ordinate being set up equal in length to the bending-moment
at the corresponding section.

Since the bending-moment at the section X (fig. 78) is the pro-
duct of the force R, into the distance x of the section from its
point of application, the further the section X be taken from the
end of the beam the greater will be the bending-moment. In the
case of a beam supported at the ends and loaded at an interme-
diate point with a weight /F; the bending-moment A7 on the section
over which /7 acts will be given by—

FiG. 82.

A[=R,a=(—xié-[) oL (2)
and the bending-moment on any section between &, and I will
be represented by the ordinate of the shaded area in figure So.

The bending-moment at the section X (fig. 78) is the sum of
the moments of the forces A, and /¥ about X, ; or is equal to the
moment of the force &£, about .X.
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88. Simple Examples of Beams.—A few of the most commonly
occurring examples of beams may be discussed here. Figure 83
shows a cantilever of length, /
supporting a weight, W, at its
end. The bending-moment at !
a section very close to the sup- 7~ 777 7 l----- 7]
port is J¥/, that at a section @
distant x from the outer end of

the cantilever is Wx. The m

bending-moment diagram s,
therefore, a straight line, the
maximum ordinate, '/, being J%]]MIMH
at the support, that at the end

o . . Fic. 83.
zero. The shearing-force is
equal to W for all sections ; the shearing-force diagram is, there
fore, a straight line parallel to the axis.

Figure 84 shows a cantilever loaded uniformly, the total weight
being #. The resultant weight acts at the middle of the canti-

>4

lever distant g from the support,

the bending-moment at the
support is, therefore, ":1. At
any section distant x from the
end of the cantilever, we find
the bending-moment as fol- :
lows : Consider the portion of
the cantilever lying to the right Futinks l!""l||||||||||||Illllluu.
of the section, the resultant of li'
the load resting on it is w x, w il t!"""""""lllIlun. '
being the weight per unit of Fic. 84

T

length, and acts at a distance : from the section. The bending-

moment on the section is therefore

=-—2/.......(3)

Plotting these values for different values of x, the bending-moinent
curve is a parabola.
H
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The shearing-force on the section distant x from the end is
Wwx = Q;.f Plotting these values for different values of x, we
get the shearing-force curve a straight line, having the ordinate W
at the support and zero ordinate at the end.

Figure 85 shows a beam of span, /, supporting a load, /¥, at the
middle. The reactions at the support are evidently each equal to

1”: L ’:/, the bending-moment at any

O + section distant x from the end
Y 2 R . Wx .

te / ] *t% is therefore - , 0% being less

than i At the middle of the

iﬁ'} | _ beam the bending-moment is a
I maximum, and equal to

E——

L4 ,
= W i_WE

2 2 4

Fii. 8s.

The bending-moment curve is a triangle, the maximum ordinate
being in the middle. The shearing-force is constant and equal to

12V from one end up to the
: " middle of the beam, then
X changes sign and becomes —-I:—/
I ; ::“-1' - ‘ITIY over the other half.

. Figure 86 shows a beam
) TR supporting a load, ¥, uniformly
et IHED TN distributed. The reaction at

.4 ~ - . .
TJHH”M each support is evidently —':,;
W the bending-moment at a sec-
tion distant x from the end is

Fic. 8. the sum of the moments due to

the reaction -’:, and of the resultant load 7z x acting on the
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right-hand side of the action at a distance ': from the

section,

. _w__ x_W/(
S M= g wE . = (x 1) .« (5)

If x be made equal to i, the above formula gives the bending-

W(I_{)_ wi

moment at the middle of the beam, M, = 2 (27 4) =

8
The bending-moment curve is a parabola with its maximum
ordinate ’ZZ at the middle of the beam.

89. Beam supporting a Number of Loads at Different
Points.—The loads and their positions along the beam being
given, the reaction R, at one support can be found by taking
moments about the other support ; the bending-moment at any
section can then be calculated by adding algebraically the moments
of all the forces on either one side or other of that section.
The reactions £, and R, at the supports can also be found by the
method of sections 47 and 48. Since in this case the forces are all
parallel, the construction is simplified ; the force-polygon becomes
a straight line, and the corners of the link-polygon lie on the verti-
cal lines of action of the loads and reactions.

Figure 87 shows a beam supporting a number of weights, ¥,
W, W, IV, and figure 88 the force-polygon a, 4,¢, d,e. The
construction of figure 41 becomes as follows : From any point p,
on the line of action of /¥, draw a straight line 4 parallel to the line
06 (fig. 88). From p,, where this line cuts the line of action of
1V, draw a straight line, ¢, parallel to theline Oc¢ ; continuing this
process until the point p, on the line of action W is reached.

Through g, and g, draw p, p,and 2, #, parallelto Oa and Oe
respectively, intersecting each other at g, and the lines of action
of R, and R, at », and r, respectively. The resultant of the
loads IV, W,, W;and IV, passes through p,. Through O draw
Or parallel to 7, 7, ; then the reactions R, and &, are equal to
ra and e r respectively.

Link-polygon as Bending-moment Diagram.—If the pole O be

chosen at random, the closing line », »; of the link-polygon will .
H .- o
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not, in general, be parallel to the axis of the beam. Let a new
pole, O', be taken by drawing O O' parallel to, and » O! at right
angles to, the lines of action of the loads W), W, . . ., and leta

Fia. 8;.
L
I : R i
EEEE IR

Fic. 9o

new_link-polygon (fig. 89) be drawn. If a thin wirc be made to
the same outline as this same polygon and be attached to the
beam, and the loads IV,, W, . . . attached at the angles, it is
.. evident that the compound structure formed by the bar and
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wire is subjected to the same bending stresses as the beam (fig. 87).
In both cases the dispositions of the loads and reactions are
identical ; but in the compound structure the bar is subjected to
a thrust, 7, represented in the force-diagram (fig. 88) by O'~.
Considering the corner of the wire at which I¥, acts, the tensions
on the two portions of the wire, and the force ¥, are in equi-
librium, and are represented by the force-triangle O' a4 (fig. 88) ;
similarly for the other portions of the wire. It will be noticed
that at each part of the wire the horizontal component of the pull
is equal to O' r ; that is, equal to 7. Taking any vertical section
of the compound structure (fig. 89) the mutual actions consist of
a thrust, 7; on the bar, an equal horizontal pull, 7, on the wire, and
the vertical component of the pull on the wire. The two former
constitute the bending-couple at the section, the latter the shearing-
force. The bending-moment on any section of the beam is there-
fore equal to 74, A being the ordinate of the link-polygon ; the
link-polygon can therefore be used as a bending-moment diagram.

The shearing-force on any section of the beam (fig. 87) is
equal to the vertical component of the pull on the wire (fig. 89),
which is equal to the vertical component of the corresponding
line from the pole O! (fig. 88). A shearing-force diagram (fig. 9o)
can therefore be constructed by projecting over a base line from
7, and straight lines from a, 4 . . . (fig. 88) to the corresponding
divisions of the beam.

Example.—Calculate, and draw, a bending-moment diagram
for the frame of a tandem bicycle carrying two riders, each 150
Ibs. weight (30 Ibs. of which is assumed to be applied at the
crank-axle) ; the wheel-base being 64 inches long, the rear crank-
axle being 19 inches in front of the rear wheel centre, the crank-
axles 22 inches apart, and the saddles 10 inches behind their
respective crank-axles.

The figures of illustrations are given in chapter xxiii., page 327.

To calculate the reactions on the wheel spindles, take moments
about the centre of the rear wheel—

(120 x 9) + (30 x 19) + (120 x 31) + (30 X 41)—(R x 64)=0

from which, R, = 1031 lbs,,
and R, = 19679 lbs,
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The greatest bending-moment, which occurs on the vertical
section passing through the front seat, is

M= (1031 X 33) — (30 X 10) = 3,102 inch-lbs.

The frame, or beam (fig. 321) is drawn 4,nd full size ; the
scale of the force-diagram (fig. 323) is 1 inch to 400 lbs., and the
pole distance O' corresponds to 125 lbs. ; 1 inch ordinate of the
bending-moment diagram (fig. 324) therefore represents 32 in. x
125 lbs., f.e. 4,000 inch-lbs.

The results got by the graphical and arithmetical methods must
agree ; thus a check on the accuracy of the work is obtained.

go. Nature of Bending Stresses.—We must now consider
more minutely the nature of the stresses 7 and ¢ (fig. 81) on any
section subject to bending.

Let a beam be acted on by two equal and opposite couples at
its ends ; it will be bent into a form, shown greatly exaggerated

0 in figure 91. It can be easily seen

) that the bending-moment on the
I\ middle portion of the beam will be
I of the same value throughout, and
! \\ if the section is uniform, the amount
! of bending will be the same at all

sections ; that is, the beam, origi-
nally straight, will be bent into a
circular arc.

Considerthe portion of thebeam
included between two parallel sec-
tions 4 and 5. After bending,
these sections are inclined, and if
produced, will meet at the centre
of curvature of the beam. The top

Fic. or. fibres of the beam will be shortened

and the lower fibres lengthened,

while those at some intermediate layer, V/, will be unaltered in
length. The surface in which the centres of the fibres NV V lie
is called the wewntral surface of the beam, while its linc of inter-
section with a transverse plane is called the newtral axis of the
section. Now, suppose that the fibres could be laid out flat and

kN
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of exactly the same length as they are after bending. If the left-,
hand ends all lay in the plane 4 A (fig. 92) at right angles to
N N, the other ends must evidently lie in a plane B' B' ; BB
representing the plane in which the ends of the unstretched fibres
would lie. The distance, parallel to /%, included between the

A LY 8.
f; """""" ’? ____ Ageial. [
N ——— I . N,
A 8 ®
FiG. 9a. FiG. 3.

lines B Band B' B! gives the amount of the contraction or elonga-
tion of the corresponding fibres. The elongation or contraction
of any fibre is thus seen to be proportional to its distance from
NN, Now the stress on a bar or fibre is proportional to the
extension produced ; therefore the stress on the fibres of a beam
varies as the distance from the neutral axis.

Let O be the centre, and R the radius of curvature of ¥ . V
(fig. 91), ¥ the distance of any fibre f above the neutral axis,
0 the angle VOV subtended at the centre O by the portion of
the fibre considered. The radius of curvature of the fibre f is
(R —y), the length of she arc /] f; (fig. 92) is therefore (R—y) 0;
and the length of the arc &V, NV, is R 6. A fibre at the neutral
axis is unaltered in length by bending, so the length &, &, is the
same as in the straight position. The length of the fibre f, f; was
originally equal to that of &V, /V, ; the decrease in its length is
therefore

RO—(R—y)o=y6;
its compression per unit of length is therefore
re _ .
RO R
By section 81, the stress producing this compression is
Ey
_R........(6)
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That is, the intensity of stress on any fibre of a beam subject to
bending is proportional to its distance from the neutral axis, and
inversely proportional to the radius of curvature of the neutral
axis. Ifa fibre below the neutral axis be taken, y will be nega-
tive, the fibre will be stretched, and the stress on it will be
tensile.

Since the material near the neutral axis is subjected to a low
stress, it adds very little to the strength of the beam, while it adds
to the weight. It is therefore economical to place the material as
far as possible from the centre of the section. The framework of
the earliest bicycles was made of solid bars ; but a great saving
of weight, without sacrificing strength, was effected by using hollow
tubes. The same principle is carried out to a fuller extent in a
well-designed Safety frame ; the top- and bottom-tubes together
forming a beam, in which practically all the material is at a
great distance from the neutral axis. If the frame be badly
designed, however, the top- and bottom-tubes may form merely
two more or less independent beams, instead of one very deep
beam.

91. Position of Neutral Axis.—Consider the equilibrium of
the portion of the beam to the left hand of section 4 (fig. 91).
There are no external horizontal forces acting on this portion, and
therefore the resultant of the horizontal forces due to the internal
reaction of the particles at the section 4 must be zero.

Let figure 93 be the transverse section at 4 (fig. 91), ¥ &V
being the neutral axis. The part of the section above &V AV
is subjected to compression, that below NV /V to tension ; the
resultant compressive force must therefore be equal to the re-
sultant force of tension. Consider a strip of the section of
breadth 4, and thickness , at a distance y from the neutral axis ;

the area of this strip is 4 #, the stress per square inch is ERy ; the

total force on it is therefore
E

Loty
R y

The total force on the whole section will be the sum of the forces
on all such strips ; compression being considered positive and



CHAP. XL Straining Actions : Bending ’ 105

tension negative. £ s the same for all the strips, therefore the

R
resultant force on the section may be written
E \]
R b1y,

3 4 ¢y indicating the sum of all the products 6 7y. Since the
resultant force on the section is zero, we must have

Sbty=0 . . . . . . . (D

Referring to section 5o, it will be seen that this condition is
equivalent to saying that the neutral axis must pass through the
mass-centre of the section.

92. Moment of Inertia of an Area.—In figure 93, 4 / is the
area of a narrow strip parallel to, and distant y from, the axis
N N; bt y?is therefore the product of a small element of area
into the square of its distance from the axis. The sum of such
products for all the elementary strips into which the given area
can be divided is called the moment of inertia of the area, and, as
shall be shown in the next section, is of fundamental import-
ance in the theory of bending.

The calculation of moments of inertia for areas of given shape
is beyond the scope of an elementary work like the present ; a
few of the most important results will be given for convenience
of reference.

Let 7 denote the moment of inertia about an axis passing
through the mass-centre. Then, for a square of side 4,

I

I= k. . . .. ... (8

For a circle of diameter 4,

[ =

s

6 (9

For a rectangular section of breadth 4 and depth 4 (perpendicular
to the neutral axis),

I=__6k* . . . ., . . (10
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For an elliptical section of breadth 4 and depth £,
™
[=64blz3 B €29

For a hollow circular section of outside and inside diameters, 4,
and d, respectively,

1=6"4(d,4—d,4). C e (12)

Let A be the area, the moment of inertia of which is being
considered. Then for a rectangular section 4 = 4 %, and (10)
may be written

I
I= 44 . . . . . . . (13)
For a circle 4 = Z d? and (9) may be written
1
I= c4d> . . . . . . . (13)

Similarly, for an ellipse of breadth 4 and depth %, 4 = :b d;
(11) may therefore be written
I
I= cdr*. . . . . . . (15)

That is, for each of the three sections considered, the moment of
inertia is equal to the product of the area, and the square of the
depth at right angles to the axis of inertia, multiplied by a constant
factor, which depends on the skape of the section. It can be
shown that this is true for sections of all shapes, the value of the
constant factor being different for different shapes of section, but
the same for large or small sections of the same shape.

Moment of Inertia of an Area about Parallel Axes.—The
moment of inertia of an area is least about an axis passing through
the centre of area.

Let 7, be the moment of inertia of an area 4 about any axis
through the centre of area. Then it can be easily shown that the
moment of inertia about a parallel axis distant y, from the centre
of area is [y + A v, %

Moment of Inertia of an Area about different Axes passing
through the centre of figure—The moment of inertia of an areg
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about different axes passing through the centre of figure are in
general different, but however complex be the outline of the area,
an ellipse can be drawn with its centre coinciding with the centre
of the area, such that the moment of inertia relative to any axis
drawn through the centre varies inversely as the square of the
corresponding radius-vector of the ellipse. This ellipse is called
the ellipse of inertia, or the momental ellipse, of the area. The
axes corresponding to the major and minor axes of the ellipse are
called the principal axes of the figure.

The momental ellipse for a rectangle, if drawn to a suitable
scale, touches its sides. Similarly, for a triangle it can be shown
that the ellipse touching the three sides at their middle points can
be taken as the momental ellipse.

If the major and minor axes of the momental ellipse are equal,
the ellipse becomes a circle, and the moments of inertia about all
axes through the centre are equal. For example, since from
symmetry the momental ellipse for a square is a circle, the moment
of inertia of a square is the same for all axes passing through its
centre.

93. Moment of Bending Resistance.—The moment about the
neutral axis of all the forces p on the fibres of the cross section is
called the moment of resistance to bending of the section, and is of
course equal to the bending-moment on the section due to the
external forces.

The moment of the force on the strip 4  (fig. 93) is

f bty xy ‘
and the moment of all the forces on all the strips is
M=£Ebty2. e e o (16)
which may be written
E
M=,7. . ... ..../((@1)

Substituting the value of % from (6) in (17) it may be written

M _p
1_),.........(18)
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(17) and (18) may be conveniently written together thus :

M _E_»p .
TSRSy (19)

04. Modulus of Bending Resistance of a Section.—The
greatest stress on a section occurs, as has already been shown, on
the fibre furthest away from the neutral axis. Let f be this stress,
then, denoting the corresponding of y by y,, (18) may be written

M=y£lf.........(2o)

The quantity o which is a geometrical quantity depending on
\?

the area and shape of the section, and not in any way on the
material, is called the modulus of bending resistance of the section,
and will be denoted by the letter Z. (20) may then be written

M=Zf . . . .. .. .. (a1)

From (21) it is evident that the modulus of a section bears the
same relation to the bending-moment on it, as the area of a section
bears to the total direct tension or compression on it. The
total pull on a bar is equal to the product of its area into the
tensile strength per square inch. The bending-moment on any
section of a beam is equal to the modulus of the section multiplied
by the greatest stress on the section.
For a rectangular section

2
z=”é’ =1Ak. . . . . (22)
For a circular section,
Z=;¢f‘=§/1d. e (23)
or approximately,
z=% . (a)
10
For a hollow circular section,
- 7 (dl‘_“ dﬁ‘)
Z_32 4, N ¢ 1))

‘Table III. gives the sectional areas and moduli for round bars.
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From (z0) and (23) it is evident that the bending-moment a
round bar can resist, e. its transverse strength, is proportional to
the cube of its diameter.

TasLE II1I.—SEcTiONAL AREAS AND MobuLl oF BENDING
RESISTANCE OF ROUND Bars.

i Diameter | Sectional area | z Diameter’ Sectional area | z
" Inches ' ) Qq i;. i—- —In.’_ N Inches 1 S$q. in. In.?
L | -oo3r “000024 1 ‘5185 ‘0526
L 1 o123 | 000192 i ‘6013 ‘0658
W | ozr6 000647 i 6903 0809
b i ‘0491 ‘001534 1 ‘7854 ‘0982
w | o767 ' o030 it | 9940 ‘1398
a ‘1104 '+ -00§17 1t | 12272 ‘1917
e ‘1503 | -oo822 1§ | 1°4849 2552
| § ‘1964 . -o1227 3 1°7671 ’ *3313
| o1 2485 | orzs 1R ° 20739 | 4211
£ | 3068 : 0240 13 ©  2°4053 I 5261
R 3712 | ‘0319 17 27611 6471
| ¥ | am8 | o 2 31416 | 7854

95. Beams of Uniform Strength.—The bending-moment on a
beam generally varies from section to section along the axis ;
consequently, if of uniform section throughout it will be weakest
where the bending-moment is greatest. A deam of uniform
strength is one in which the section varies with the bending-
moment in such a manner that the tendency to break is the same
at all sections. This means that f the maximum stress on the
section, has the same value throughout, and therefore that Af is
proportional to Z.

‘or a thin hollow tube of constant extcrnal diameter through-
out its length, Zis approximately proportional to the thickness ;
therefore for a tubular beam in which the bending-moment varies
continuously the thickness should also vary continuously, if the
beam is required to be of uniform strength. For example, the
bending-moment on the handle-bar of a bicycle, due to the pull
of the rider, increases from zero at the end to its maximum value
at the handle-pillar. If the external diameter of the handle-bar be
the same throughout, the lightest possible bar would vary in
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thickness from the middle to the ends. This ideal handle-bar
cannot be conveniently made, but an approximation thereto is
sometimes made by inserting a liner at the middle, where the
bending-moment is greatest ; there will in this case be three weak
sections, the middle section and those just beyond the ends of the
liners.

96. Modulus of Circular Tubes.—On account of the extensive
use of tubes in bicycle making, it will be desirable to give some
additional formula relating to the moment
of inertia and the modulus of a tubular
section.

Let d,, d, and d, (fig. 94) be the out-
side, mean, and inside diameters respec
tively, ¢ the thickness, and 4 the area of
the transverse section of the tube. From
(12) for this section

I=¢ @' —dh) = (4 —d)d + ) +d7) . (26)

64
Now, d,—dy=24 d\+dy=2d, dy=d+1 dy=d—1.
Therefore,

(@ + d?) =(d +4)* + (d — £) =2(d* +17).
Substituting in (26)
I=" .2¢t.2d.2(d* + ¢?)

64
But #d¢ = A, thercfore,
r=4@rrapy=2L@+m. . .. (27)
16 8
Now,
z=4 A @+ d)) _A@d?-4d 1+417)
d 8 d, 8 d,
2
A ( 2 ﬂ) A ( 21’)
="\|d -2+ = d, + e e 28
4 1 dl 4 2 d| ( )

If the tube be #4/n, #2 will be small in comparison with 42, and
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2 dtf will be small in comparison with 4,. Equations (27) and (28)
1
may then be written

]

I=" g3 =472

3 3 approximately . . . (29)

Z= % dit= A;’ approximately. . . . (30)

The error introduced by using the approximate formula (30)
for Z is on the safe side, and is very small for the ordinary tube
sections used in cycle construction. Thus for a tube 1 inch
diameter, 16 W.G., the exact value of Z is ‘04140, that given by
(30) is "o4102, the error being less than 1 per cent. in this case.
If, however, 4 or d,, be used instead of 4, in formula (30) the
crror will be on the wrong side.

Table IV. gives the sectional areas, weights per foot run, and
moduli of bending resistance for the ordinary sections of steel
tubes used in cycle construction, the moduli having been calcu-
lated from the exact formula (28).

From (30) the transverse strength of a tube is proportional to
its sectional area and to its internal diameter. If the internal
diameter be kept constant, the transverse strength is proportional
to the thickness. If the sectional area be kept constant, the
transverse strength is proportional to the internal diameter. If the
thickness be kept constant the strength is approxi- ;
mately proportional to the square of the diameter.

97. Oval Tubes.—We have already seen that the
moment of inertia of an ellipse with major and minor

axes 4 and 4 respectively is ;‘; bR,

Let a second ellipse (fig. 95) be drawn outside the first
and concentric with it, having its semi-axes the length
¢ greater. The axes of the second ellipse will be 4+ 27 and
A + 2 ¢ respectively, and its moment of inertia will be

Ld 3=
64(é+ 28 (k422
6’;{“’ + @R+ 66R) 1+ (128 + 128 R)

+ (24h+88) 14 16f‘}
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T.

SEcTiONAL AREAS, WEIGHTS PER FooTr Rul

Outside diameter 8 b 87
of tube 8 ] 8

Imperial | qu.o | W ! | w i ) ! w

standard ; o lbsf. per A z |b:‘ per ! A zZ lb?. per A

wire ! o oot |sq.in.” in' oot .in.| in.? oot . i
gauge Inches | jongih iﬂq length |s‘Ll run -

e | — —

No. 10 | ‘128 ‘34 0993 | ‘cosI 52 ‘1496 | o116 | 69 ‘1998
11, ‘116 ‘33 | ‘0944 | ‘o051 ‘48 ' ‘1399 'ou3| ‘64 | ‘1855
12| 104 ‘31 , ‘0885 | "0049 ‘45 - ‘1294 | ‘o108 ‘59 | ‘1702
13§ ‘092 28 | 0818 | "0048 ‘41 ' ‘1180 | ‘0103 53 | ‘1541
14| ‘oo 26 ‘0742 | ‘0046 ‘36 : ‘1056 | "0096 47 | "137¢
15 072 24 | 08850044 | 33 ‘0968 |-00gr| 43 | -1as:
16 . ‘064 ‘22 - ‘0625 . ‘0042 ‘30 | ‘0877 | "o083 ‘39 | ‘rxa8
17 ‘056 19 ‘0561 | ‘0039 27 ‘0781 | "0078 | ‘35 | ‘1001
18 ‘048 ‘17 . '0493 | ‘0036 ‘24 | '0682,0070! 30 | -‘087¢c
19, ‘o40 ‘I3 ‘0421 ‘0032 20 0578 | ‘0062 25 0736
20 . ‘036 13 | 'o383| ‘0030 18 i ‘0525 | ‘0057 23 | "066€
21 | ‘032 ‘I2 ‘0345 -0027 I6 - "0470 | ‘0052 21 059€
22 028 ‘Il ¢ ‘0305, ‘0025 14 0415 | "0046 18 -osac
23 | ‘oz4 ‘09 | ‘0265 | ‘o022 ‘12 o3sgl ‘0041 16 | ‘045z
24 ‘022 ‘o8 ‘0244 ' "0020 ‘It 0330, ‘0038 ‘14 | 'O4x7
25 . ‘o020 ‘08 | ‘0223 | "o019 ‘10 ' ‘0302 0035 ‘13 | "038¢
26 | ‘o018 ‘07 ‘0202 . "0017 | 09 ‘0273 | ‘0032 ‘12 | '034:
28 ‘o148 ‘06 ‘0167 ‘001§ ‘0226 | ‘0027 10 028
30 ' ‘o124 05 | OI4I ; "0012 07 ' ‘0190 | "0023 ‘08 | ‘o=23¢
32 | ‘o108 oy | ‘o124 . 0011 06 ‘0166 | ‘0020 ‘07 | ‘oot

Outside diameter I 1 v 13’/ 7
of tube l 4 8 l.

No.10| ‘128 i 156 | ‘$4511 | ‘1151 1°73 | °5013 ' '1.;33l I'9r | *sgxé
16 143 4132|1074 159 | 4587 1334|173 | ‘Sog:
12| "104 129 374409921 143 | 4152 ‘1228 1°58 *356¢
13 092 1'16 | 3347 | ‘0903 | 1°28 |°3708, ‘1115| 141 |,

14 ‘ ‘080 1’02 ' '2940 [ '08og} 112 | 323§ | 0996 | 123 | ‘356
15 |1 ‘o72 | ‘92 | 2664 | 'o742| 1702 | 2047 ‘o912 1'12 | 323¢
16 | 06y | 82 | 238406731 9t |°2635]'0825| 1'00 ! ‘2885
17 . ‘036 ‘73 | "2101 | "0600 ‘8o | 2320, '0735; ‘88 | -agyc
18| g8 | 63 | 1813 | o325| 69 | 2001 !°0642| 76 | -a1gc
19 ‘040 X X] | ‘1521 | ‘0446 ‘58 'x679i ‘0544 ‘63 [ 183¢€
20 ‘036 ] 47 | 1373 ' ‘0405 52| 15141 '0494 ‘57 ‘1656
21 ‘032 | ‘g2 | 1224 0364 47 | 1350 ‘0443 ‘51 ! 1476
22 ‘028 37 | ‘1075 ‘0321 41 | 185§ 0391 45 | ‘129§
23 ) o4 "32 | 0924 ‘0278 '35 | '1019 | ‘0338 38 113
24| oz2 29 | 0849 ! ‘0256 '32 | 0935 | 0311 '35 | ‘1022
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-1

sy S ”" |7 X
" 8 | 1 ‘ Iy |
L N e :
w | ' w | A\
ox A | Z lbs.per| A | Z llbsper, A | Z bsper A | Z |
sq. in in. foot |sq. in. in.? foot | sq.in.' in.* foot sq. in.  in.* |
| run | | run ! run
L = U _—
‘2501 | ‘0336 1';2 3;2:6;' 'o4ggl 1’21 | 3506 | ‘0681 | 138 .;20;9 ;.o?oo
‘2310 ‘0320 " ‘2 ‘04 1’11 | "3222: ‘0640 | 127 | 7 43
2111 '0348);; 'Bg ':gg” '04‘3)2' 1’01 '2227, 0592 1'rg 23351 ‘0781
‘1902 "02 7 2203 * "0 91 | 2024 0546 | 1°03 1!o714
‘1634, 0256 ! ‘69 | ‘1998 i ‘0365 . ‘80 | 2312 ‘0493 | ‘91 2626 ‘0641
‘1534 0238 63 | 1816 .0337 ‘73 | 2099 ‘o455| B2 ‘2382 ‘0389
‘1379 ‘0218 ‘56 | '1631 ; '0308 | ‘65 | ‘1882 ‘ogq14| ‘74 ‘2133 ! ‘0535
‘1221 ‘0197 ‘50 | 1441 "0277 57 | "1661 | *0371 | ‘65 ‘1881 ‘0479
‘1059 ‘0175, 43 | 1247 ‘0244 ‘50 ! °'1436.°0326| ‘56 ‘1624 ‘o419
’0893| ‘0130 ‘36 ‘1050 ‘o210 32 | ‘1207 ‘0279 | 47 ‘1364 . "0357
1
‘0807 0137 33 | ‘0949 ' ‘o1g1 38 1 °1090 ‘0253 43 ‘1232 ‘0325
'27622 ‘o124 :g ‘0847 ‘o172 34 ‘;‘0?73 ‘0228 | -38 :,329 ‘0292
‘0635 ‘orrof - ‘0745 '0152 ‘30 ‘0855 ‘0202 | ‘33 5 ‘o258
'054; ' "0096 ‘22 | ‘0642 ‘0133 ‘25 0736 ' ‘o175( 29 ‘0830 '0223
‘0503 ‘0089 | ‘20 [ ‘0590 | o122 ' ‘23 0676 ‘o161 | 26 0702 ‘ ‘0206
'0459‘ ‘0082 | ‘19 |'0537'°oriz2 21 | 0616 -‘o148| ‘24 ‘o694 ‘0188
‘0414 . ‘0074 | ‘17 |'0485 ‘o102, ‘19  ‘O555. ‘0134 | ‘22 ‘0626 ‘o170
‘0342 | ‘0002 ‘14 | o400 0085 16 | ‘0458 | orrr| 18 | ‘0516 ' ‘0140
‘0287 ‘o052 | ‘12 |'0336' ‘o071 | ‘13 | 0385 ‘oogy| ‘15 |-0433/ -orrg
‘0251 ‘0046 | ‘10 | 0293 °0063 12 0336 - ‘0082 ‘13 ‘0378 ‘orog
[ i 8/ 7
l‘/I I ]. ‘.Il 2'/
*6o19 | zoggl 2::3 . 6521 | '2437 2°43 | ‘7024 ':274 2°60 | 326 ‘3312
. | 2 2 . . . . . .
58 9| 6 1 Say aea| 2a0 | '50s | a4ah | 33y | oy | dres
i 4431 | "1608 | 1°66 4792 | ‘1888 [ 18 | ‘5153 | 2191 | 1°91 5515 | "2516
13883 ‘1430 I 145 | °4197 | ‘1676 | 1°56 | 4511 | ‘1942 | 1°67 | "4826| 2228
‘3513 ‘1306  1°3t | ‘3795 ‘1530 | 1°41 | ‘4078 | ‘1771 | 1°51 | "4361 | "2029
"3138 1179 . 1717 |°3390 ‘1379 | 126 | 3641|1504 | 1'34 | "3892 [ ‘1825
2760 , ‘1047 + 103 2980 ‘1223 | 111 | "3200 r4l3 118 | ‘3420 | ‘1617
, 2378 ‘ogir, -tg 2566 ‘1063 | ‘95 | ‘2755 102 | ‘2944 ! ‘1402
I ‘1992 . ‘0770 | 74 2150 ‘0898 | ‘8o | 2 1036 ‘85 | 2465 | ‘1184
‘1797~ ‘0698 ! 67 ‘1938 | 0814 ‘72 ) 2080 | ‘0938 °77 | ‘2221 | ‘1071
j ‘1601 ‘0625 ‘1737 | ‘0728 | 64 ‘1853 | ‘0839 ‘68 | ‘1978 | "0958
, (1405 ‘o5t '53 ‘1515 0642 { 's6 | °1525|°0739| ‘60 | 1735 | ‘0843
‘1207 0476 45 | ‘1301 ’ 0554 | 48 | 1396|0638 | ‘st | ‘1490 ‘0737
‘1108 41 | ‘1194 . ‘O510 ‘44 1281 ' '0586 . 47 ! ‘1367 ' “06069 |

0438
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(17) and (18) may be conveniently written together thus :
M_E_p _
7 = »R —y s e e e 4 e e e (19)
94. Modulus of Bending Resistance of a Section.—The
greatest stress on a section occurs, as has already been shown, on

the fibre furthest away from the neutral axis. Let f be this stress,
then, denoting the corresponding of y by »,, (18) may be written

M=y£lf.........(zo)

The quantity }{ which is a geometrical quantity depending on
1?

the area and shape of the section, and not in any way on the
material, is called the modulus of bending resistance of the section,
and will be denoted by the letter Z. (20) may then be written

M=Zf . . . . . . . . . (21)

From (21) it is evident that the modulus of a section bears the
same relation to the bending-moment on it, as the area of a section
bears to the total direct tension or compression on it. The
total pull on a bar is equal to the product of its area into the
tensile strength per square inch. The bending-moment on any
section of a beam is equal to the modulus of the section multiplied
by the greatest stress on the section.
For a rectangular section

Z=~~6_=%Aﬁ. e (22)
For a circular section,

Z=;'2.d:’=§/1d R € X))
or approximately,

Z = ‘:; N ¢ 7))

For a hollow circular section,

7= " (d'Ii — dy')

32 a, N ¢ 1)

‘Table III. gives the sectional areas and moduli for round bars.
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From (20) and (23) it is evident that the bending-moment a
round bar can resist, Z.e. its transverse strength, is proportional to
the cube of its diameter.

TaBLE III.—SEcTIONAL AREAS AND MobpuLl oF BENDING
RESISTANCE OF RoUND Bagrs.

| Diameter | Sectional area | VA Diameter‘ Sectional area VA
Inches ‘ —Sq in. i—_ry-ln.’ N .lnches I Sq. in. In.

& ‘0031 | ‘000024 3 *5185 ‘0526
3 ‘0123 ‘000192 3 6013 0658
™ 0276 1000647 | 6903 0809
‘0491 ‘001534 1 l 7854 ‘0982

o ‘0767 | 00300 I ‘9940 ‘1398

3 ‘1104 | ‘00517 § } 1'2272 ‘1917

o ‘1503 | 00822 1§ | 14849 2552

? ‘1964 . .'o1227 13 . 17671 3313
| 2485 | o175 g8, 20739 | 4211
£ | 3068 | o240 1} 2°4053 | *5261
g - 3712 | 0319 13 27611 6471
3 ‘ ‘4418 . o414 z | 31416 l 7854

95. Beams of Uniform Strength.—The bending-moment on a
beam generally varies from section to section along the axis ;
consequently, if of uniform section throughout it will be weakest
where the bending-moment is greatest. A beam of wuniform
strength is one in which the section varies with the bending-
moment in such a manner that the tendency to break is the same
at all sections. This means that £ the maximum stress on the
section, has the same value throughout, and therefore that M is
proportional to Z.

For a thin hollow tube of constant external diameter through-
out its length, Z is approximately proportional to the thickness ;
therefore for a tubular beam in which the bending-moment varies
continuously the thickness should also vary continuously, if the
beam is required to be of uniform strength. For example, the
bending-moment on the handle-bar of a bicycle, due to the pull
of the rider, incrcases from zero at the end to its maximum value
at the handle-pillar. If the external diameter of the handle-bar be
the same throughout, the lightest possible bar would vary in
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the flat side is xl_z /% 23, that of the semicircle is 116 %3 ¢ ; therefore
the moment of inertia of the section of the D tube is

i+ T B¢

12 16

If # be small in comparison with Z, the first term in this expres-
sion may be neglected in comparison with the second, and there-
fore,

I= 116 Bt = :r" ¢, approximately . . . (39)

But the 7 just found is not about an axis through the centre of
figure ; this we now proceed to find. Let G be the centre of
figure ; the distance O G can be found as follows : The moment
of the semicircle about the axis 44is 272/ (see sec. 50), that of
the straight side about the same axis is zero, the total moment of
the D tube about the axis & & is therefore 2727 But the total
moment is also equal to the total area multiplied by the distance
O G ; therefore 272t = (27 + 77) ¢ x OG,

_ 2722 2 _

And OG—(E—-F;)_;— P —r=. 3897. . . . (40)

Let Z, be the moment of inertia about an axis gg passing
through G parallel to 44 ; then by section g2

= S S
I 10+(z+1r)rl.(2+7r)2r
=T A8 (T 4 ) -
Therefore, 2= 7 727 — 427, (2 e G
But 4 = (2 + =) »¢; therefore we may write
= T __ 4
10_{2(2”) X Jan. o @)

Z, the modulus of bending resistance about the axis g¢ is equal

G]—f\" X being the extremity of the radius through O G. Now,

CX=0X-0G=r—_2_,=._"T_,
24+ 247

o [1_ a4 —
..Z—{2 ”(2+7r)} Ar=.2524A4Ar . (43)

to
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Let 4 be the diameter of a round tube equal in perimeter to the
D tube. Then x d = (z + =)r,

4

Sr=

- d="'6110d.
w

Substituting this value of » in (43), we get,
,_f =  _ 4 —_
Z—{z(z_'_") (—2+')2} Ad="1542 Ad (44)
The Z of the original round tube is approximately ; Ad, so

the strengths of a round tube and the D tube into which it can
be pressed are in the ratio of “2500 to ‘1542, #.e. 1000 to 617.

But since a D tube is used when the space O X is limited, it
would seem fairer to compare it with a round tube of equal
weight and of diameter O X. The Z of a round tube of diameter
OX is "254r. Comparing this value with
that in (43), it is seen that the strength of the D
tube is slightly greater than that of a round
tube of equal weight, and of diameter equal to ~.
the smallest diameter of the D tube, the ratio
being 252 to ‘2500, a difference of less than
one percent. in favour of the D tube.

99. Square and Rectangular Tubes.—Con- Fia. o8.
sider the 7 of a square tube of section 4 B C D (fig. 98), about
an axis a a parallel to the side 4 B. The 7 of each of the sides

BCand D Ais ":'2’ that of each of the sides 4 B and CD is

2
ht. A ; therefore, for the whole section
4

3
1=2.h’+2.lzl..,"=?.ﬁ’l. N 13
12 4 3 -
The total sectional area is 4 /4 ¢, therefore
1=;).4/z’............(46)
also, Zze=l=Yar . . . . ... ... .. &)
y z 3

2
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Let 4 be the diameter of a round tube of the same perimeter
as the square tube ; then 4 A =rd

Ah=£d=7%44md
Z::iAd=1m8Ad ce . (48)

hence, comparing with (30), the moduli of bending resistance of
the square tube and of the original round tube are in the ratio of

Zto ;, or of = to 3, Z.e. 1047 to 1000, in favour of the square
12

tube.. Compared with a round tube of equal sectional area, but
of the same diameter as the side of the square tube, the ratio is
‘435 to 4451, Ze. ; to i, or 133'3 to 100 ; ZLe. the square tube is 33°3
per cent. stronger than the round tube of equal area and diameter.

Rectangular Tubes.—If a round tube be drawn into a rectan-
gular tube of the same thickness, perimeter, and sectional area, it
can be shown that the strength of the latter will be greatest when
its depth /% is three times its width 4.

For any rectangular section, approximately

I=20t (g)2 + 2 {I};= /_:iz(b + g) . . (49)

z=m@+§).... L (39)
For the strongest rectangular tube, (49) becomes

L:wﬂ=§AP Y 1))
and, z=l4an. . L (s

Comparing (33) and (50), it is seen that a thin rectangular
tube is stronger than an elliptical tube of the same depth, width,
and thickness in the ratio 16 : 3. Now the ratio of the peri-
meters, and therefore the weights, is never greater than 4 : » ;
this being the value when the ellipse and rectangle become a circle
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and square respectively. Weight for weight, then, the rectangular

has at least ‘; times the strength of the elliptical tube.

That the rectangular is stronger than the elliptical tube of
equal depth, width, and sectional area, can be easily shown from
first principles, as follows : Figure 99 shows
quadrants of rectangular and elliptical tubes of
equal sectional area. Since the perimeter of the
ellipse is less than that of the rectangle, its g
thickness is greater. Let a portion a of the
ellipse be marked off equal in width to the
corresponding part of the rectangle, so that the
moments of inertia about the axis O X are equal.

The part 4 is common to both ellipse and rect- L
angle, and there remain only the partsc. That __H __9| _
belonging to the rectangle is at a much greater &
distance from the axis O X than that belonging

to the ellipse ; its moment of inertia is therefore greater, and the
rectangular is stronger than the elliptical tube to resist bending.

m

I I

FiG. 99.
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CHAPTER XII

SHEARING, TORSION, AND COMPOUND STRAINING ACTION

10o. Compression.—The laws relating to simple compressive
stress are exactly the same as those of simple tension, the formula
(1), (2), (3), and (4), of chapter x. will apply, p being in this
case the compressive stress, ¢ the compression per unit of length,
and £ the modulus of elasticity for compression. For a homo-
geneous material with perfect elasticity, as above defined, £ would
be the same for tension and compression.

On a bar which is short in comparison to its diameter, if the
compressive stress be increased above the elastic limit of compres-
sion, the bar gives way ultimately by lateral yielding. If the
material be hard, the bar may actually split up into several pieces.
If of a soft, ductile material it will bulge gradually in the middle
while being shortened in length.

1o1. Compression or Tension combined with Bending.—If
a bar be simultaneously subjected to bending, and a pull or thrust
parallel to its axis, the maximum stress on the section is the sum
of the scparate stresses due to the separate straining actions. If
the bar be subjected to a pull 2, and a bending-moment M, 4
being the area and Z the modulus of the section, the maximum
tensile stress is

_rr M
f= 4 + g e (1)
and the minimum tensile stress is
P N
Y= = ...
p=t-7 (2)

For circular tubes of small thickness, substituting the value of Z
from (30), section g6,
=7 M
f—-A+Ad.........(3)
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The bending-moment may be produced by applying the pull
7 at a distance x from the neutral axis of the section (fig. 100).
In this case M = P and (3) may be written

Px
4/’}?........(4)_

If the bar be subjected to a compression  and a bending-
moment 2, equations (1), (3), and (4) give the maximum compres-
sive stress on the section, equation (2)
the minimum compressive stress. P

102. Columns.—If a long bar be
subjected to tension, any slight devia-
tion from straightness (fig. 100) will,
under the action of the forces, tend to
get less. If, on the other hand, the
bar be subjected to compression, the ¢
deviation from straightness will tend to
get greater, and the bar will give way
by bending (fig. 101).

The stresses on a straight short }
column supporting a load, placed
eccentrically, are given by formula (1)
and (2) FiG. 100. Fic. 101.

Example.— A bicycle tube 1 in. diameter, 16 W.G,, is subjected

. . . . I . .
to a compressive force, the axis of which is ~ in. from the axis of
4

_»r
=%+

Ma O

ST
>

)

-__--__a\;-__._
S

v

'

the tube.  Find the breaking load, the breaking stress of the material
being 30 tons per sq. in. From Table IV., 4 = . 1882 sq. in.,

7 = o414 in3, also M = ; P inch-lbs. f= 30 x 2240 lbs. per

sq. in. ; substituting in (1)

r P
Jox2240 = g, 4X-0414
from which, P =59211bs.

If the load were placed exactly co-axial with the tube, it would
reach the value given by,

P
88; 30 X 2240

ie., = 12650 lbs.
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ro03. Limiting Load on Long Columns,—If, under the action
of the load, the deviation a becomes greater, the bending-moment
also becomes greater without any addition being made to the
load ; thus the deviation once started, may rapidly increase until
fracture of the column takes place.

Let the section of the column be such that, under the action
of the load, its neutral axis bends into a circular arc 4 C B (fig.
101) of radius R. Let 4 DB be the chord, C D the greatest
deviation, and C £ a diameter of the circle. Then, by the well-
known proposition in elementary geometry,

CDxDE=A4D x DB.
i.e. neglecting the difference between C £ and D £,

2Rx= f approximately.

But R = b:‘ II" from(17), chap. xi.,, and M = Px. Substituting,
SET
P = A e e (s)

If the load be less than that given by (5), no deviation will take
place.

If the column be of constant section throughout its length
its neutral axis bends into a curve of sines, and it can
be shown that the limiting load is

P=""00 . ... .6

If the middle section of the column be prevented from
deviating laterally, it will bend into the form shown in.
figure 102. In this case the length of the segment of
the curve corresponding to figure 101 is half the total
length, and the corresponding load will be

*ET
p=d4m el .
n 6))
Again, if the ends of the column be held in such a
manner that thedirections of theaxis atthe end are always the same,
it will give way by bending as shown in figure 103. The segment

F1G. 102,
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4 d in this case is of the same shape as the curve in figure 101, while
the portions a 4 and ¢ 4 are of the same formas 4 ¢ and d¢. In this
case, therefore, the length of the segment 44 is :, and the corre-
sponding limiting load is given by the formula

4x3ET
= e ®

If the column be fixed at one end (fig. 104), held laterally but
free to turn at the other,

P="T "0 )

P =

K= —= e —~ 3]

t
|
|
|
|
V
)\
|
|
|
!
o
l

F1G. 103. FiG. 104. FiG. 10s.

If the column be fixed at one end and quite free at the other
end (fig. 105),

=—47I—-.........(IO)

These are known as Euler’s formulz, and are only applicable to
bars or colunms in which the length /is great as compared with
the least transverse dimension. / is the length before bending ;
though in the figures, in which the bending is greatly exaggerated,
it is marked as affer bending.

104. Gordon’s Formula for Columns.—The pieces of tube
used in bicycle building are too long to have the simple com-
p“)ssinr formnla snnliad te tham and ten short for tha apt_\h'naﬁ'\n
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of Euler's formula. A great many experiments on columns,
principally cast iron, have been made by Hodgkinson, and Gordon
has suggested an empirical formula which agrees very closely with
his experiments. For thin tubes, Gordon’s formula becomes

w_ f
A4 _ ., 817 . . . . . . (1)
T

fand ¢ being constants depending on the material.

Actual experiments on the compressive strengths of weldless
steel tubes are wanting, but taking f = 30 tons per sq. in., and
¢ = 32,000, Gordon’s formula becomes

W_ 67200
A~ o (12)
32000 4%

Example.—A tube is 1 in. diameter, No. 16 W.G., 20 in.
long ; required the crushing load by Gordon’s formula.
F¥rom Table IV, page 113, 4 = 1882 ;

W _ 67200 _ _ 67200
" -1882 L4 . 400 roIzs
32000 X I

from which,
IV = 12490 lbs,,

slightly less than for a short length of the same tube (sec. 102).
105. Shearing.— Let 4 B C D (fig. 106) be a small square
prism of unit width perpendicular to the paper, subjected to

shearing stress on the planes
D L - A A Band C D. If the planes
- 14 A B and C D be very close
. i to each other, the shearing
} /j, ;1-7 A stress will be the same on
! AN z g both. If ¢ be the shearing
ct_‘ —~—g—~-—:—i-5 Vi stress per unit of area, the
RREY. downward force acting at 4 B

FiG. 106, Fi1G. 107.

o and the upward force at C D
will each be ¢ x 4 ' B. But since the portion 4 B C D is at rest,
the couple formed by the forces at 4 B and C D must be
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balanced by an equal and opposite couple, formed by forces
acting at 4 D and B C, since no force acts normally at the
surfaces 4 B and C D. Thus the shearing stress on the sides
A D and B Cis equal to thaton 4 B and D C; or the shearing
stress on a plane is always accompanied by an equal shearing
stress on a plane at right angles to the former, and to the direction
of the shearing stress on the former plane.

Transverse Elasticity.—Under the action of the shearing forces
the square 4 B C D (fig. 106) will be distorted into a rhombus,
A' B! C D, the angle of distortion 4 D 4! being proportional to
the shearing stress. Let ¢ be this angle and ¢ the shearing stress
producing it ; then

gq=Co¢ . . . . . . . . (13)

C being the modulus of transverse elasticity, or the coefficient of
rigidity of the material.

Shearing Stress equivalent to Simultaneous Tension and Com-
pressive Stresses. —Draw a diagonal B D (fig. 106) ; the triangular
prism 4 D B is in equilibrium under the action of the three
forces, f, & and 4, acting on its sides, which can therefore be repre-
sented by the sides of a triangle (fig. 107). fand g being equal,
the force % is evidently at right angles to the side B D. The
triangles 4 B D and f g 4are similar ; that is, the forces f, ¢ and 4
are proportional to the lengths of the sides on which they act ; the
stress per unit area must therefore be the same for the three sides
A B, B D,and D A. Thus, the stress on the plane B Dis a
compressive stress of the same intensity as the shearing stress on
the planes 4 B and 4 D.

In the same way it may be shown that a Zenss’e stress of equal
magnitude exists on the plane 4 C. Thus, in any body a pair of
shearing stresses on two planes at right angles are equivalent to a
pair of compressive and tensile stresses respectively on two planes
mutually at right angles, and inclined 45° to the former planes.

106. Torsion.—If a long bar be subjected to two equal and
opposite couples acting at its ends, the axes of the couples being
parallel to the axis of the bar (fig. 108), it is said to be subjected
to forsion. The moment of the couple applied is called the
twisting-moment on the bar. If one end be rigidly fixed, the
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other end will, under the action of the twisting-moment, be dis-
placed through a small angle, and any straight line on the surface
of the bar originally parallel to the axis will be twisted into a
spiral curve a a. If the twisting-moment be increased indefinitely,
the bar will ultimately break, the total angle of twist before break-
ing depending on the nature of the material.

Let figure 109 be the longitudinal elevation of a thin tube of
mean radius » and thickness 4 subjected to a twisting-moment

F1G. 108, FiG. 109

T foot-lbs. A square, a 4 cd, drawn on the surface of the tube
becomes distorted while in a strained condition into the rhombus
abd d. Thus, every transverse section of the tube is subjected
to a shearing stress. If the tube be of uniform diameter and
thickness, this shearing stress, ¢, will be the same throughout,
provided the thickness is very small in comparison with the
diameter.

The sectional area of the tube is 27 ¢~ ; and since ¢ is the
shear on unit area, the total shear on the section is 27w ¢ #».
The shearing-force on each element of the section acts at a
distance » from the centre of the tube ; the moment of the total
shearing-force is therefore 2 rg#»2%. This must be equal to the
twisting-moment 7, applied to the end ; therefore

Ty=z2mgtr. . . . . . . (14)

Thus the twisting-moment which can be transmitted by a thin
tube of circular section is proportional to the square of its radius
or diameter and to its thickness.

107. Torsion of a Solid Bar.—In a solid cylinder of radius »,,
imagine the square a 4 ¢d (fig. 109) drawn on a concentric cylin-
drical surface of radius »; it is easily seen that the angle of
distortion of the fibres, ¢, or 4a ', is proportional tc ». If ¢, be
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the angle of distortion for a square drawn on the surface of the
cylindrical rod, ¢ and ¢, the shearing stresses at radii » and 7,
respectively, then evidently
=%,
$= ” r;
and therefore

=%
q " 7.

If now the solid rod be considered to be divided into a
number of thin concentric tubes, all of the same thickness, # the
area of the tube of radius » is 2 = #7, the total shear on this tube is

279 4,0
” !

and the twisting-momént resisted is

27G) 4,3
7\

The sum of the moments of all the concentric tubes into
which the rod is divided is easily found, by one of the simplest
examples in the integral calculus, to be

T="%,3
2 1
or, T= —:;d’q, = djsq approx. . (15)

108. Torsion of Thick Tubes.—If », and 7, be the external
and internal radii of a hollow tube, the sum of the twisting-moments
(45) of the very thin concentric tubes into which it may be divided
—and, therefore, the twisting-moment such a tube can resist—is

m(n' =) q

27,
or . .
r=r @G-y "dl"ﬂ YL (6)
The quantity :6 @ ;3’") depends simply on the dimensions
1



128 Principles of Mechanics CHAP. XiL

of the section of the tube, and may be called the modulus of
resistance to torsion ; it may be denoted by the symbol Z;. Then

T=Zr.ql.

Comparing Z; with Z, chapter xi., it will be seen that the
modulus of resistance of a circular tube or solid bar to torsion is
twice its modulus of resistance to bending. The strength of any
tube to resist bending can therefore be obtained by multiplying
the modulus from Table IV., page 112, by twice the maximum
shear ¢,.

109. Lines of Direct Tension and Compression on a Bar
subject to Torsion.—From what has been said in section 105,
there will be a compressive stress on the plane a ¢, and a tensile
stress on the plane 4 4 (fig. 109). This holds for every point on
the surface of the tube. Now if the tube be split up into a
number of narrow strips by the spiral lines # ¢, inclined 45° to the
axis (fig. 10), the tensile stresses can be transmitted just as before.
The spiral lines # ¢ are said to be fension lines, and the spiral lines
¢ ¢ at right angles compression lines. If the twisting-moment be in
the opposite direction, however, the pressure and tension spiral
lines will be interchanged, and the split tube will not be able to
transmit the twisting-moment.

r10. Compound Stress.—If the straining actions on any part
of a structure be all parallel to onc plane, the stress on any plane
section, at right angles to the plane of the straining actions, can
be resolved into a normal stress, tension or compression—and a
tangential stress, shearing. It can be shown that any system of
stress in two dimensions is equivalent to a pair of normal stresses
on two planes mutually at right
angles, and that the stress on one
of these planes is greater than, that
on the other plane less than, on
any other plane section of the ma-
terial. On any other plane the
stress will have a tangential com-

FiG. 110, ponent.

An important case of compound stress is that of a shaft sub-

jected to bending and torsion ; a section at right angles to the
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wis of the shaft is subjected to a normal stress, /, and simul-
:aneously to a torsional shearing stress, g. Consider a small
portion of a material (fig. 110) subjected to stresses parallel to the
plane of the paper. Let 4 B C be a small prism, of unit depth
it right angles to the paper, the face B C being subjected to a
normal stress, f; and a tangential stress, ¢. From section 106 we
tnow that an equal shearing stress, ¢, must exist on the face 4 B.
Let us find the magnitude of the stress p on the face 4 C, on
which the stress shall be wholly normal.

Considering the equilibrium of the prism 4 B C, and resolv-
ng the forces on the three faces parallel to the side 4 B, we
1ave

2. AC.sin0 —g. AB—f.BC=o

@P—=Stanb=q . . . . . . (17)
Similarly resolving the forces parallel to B C, we get,
2. AC.cos0 —g.BC=o

o

x
p=gqtan. . . . . . . . /18

Multiplying (17) and (18) together, we get

p@—-N=¢

rom which )
b=3{fEVPA+4¢} . . . . . . (19)

he two values of p in (19) are the maximum and minimum
10rmal stresses on the material. That is, the tension f and the
shear ¢, on the face B C, produce on some plane 4 C the
naximum tensile stress } {f + v /% + 4 ¢%, and on another plane
‘he minimum tensile stress 4 {f — v f* + 4 ¢%} ; the latter plane
seing at right angles to the former.

If the stresses on two planes at right angles be wholly normal
ind of equal intensity, it can easily be shown that the stress on
iny other plane is wholly normal and of the same intensity. If
he normal stress be compression, the whole system of stress is of
e nature of fluid pressure. If there be a tensile stress on one
slane and an equal compressive stress on the plane at right angles,

K
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it has already been shown that this is equivalent to shearing
stresses of the same intensity on two planes at angles of 45° with
the planes of the normal stresses. This pair of shearing stresses
tends to distort the body but not to alter its volume, whereas fluid
pressure tends to alter the volume but not the shape of the body.

Any set of stresses in two dimensions can be expressed as the
sum of a fluid stress and a shearing stress. Let two planes, 4 and
B, at right. angles be subjected to normal tensile stresses of in-
tensity, p and ¢, respectively. Then this state of stress is equivalent
to the sum of two states of stress, the first being a tensile stress

on A and an equal compressive stress on the plane B. For
P =P::_¢ + 1’_:_ ¢ and ¢ =1’_’zf_9. - 4?_:_7. This principle will

be made use of when discussing the outer cover of a pneumatic
tyre.

111. Bending and Twisting of a S8haft.—In a circular shaft
of diameter, 4, subjected to a bending-moment, A, and a twisting-
moment, 7, the normal stress due to the bending-moment is

M

== "
I J
32
and the shearing-stress due to the twisting-moment is

¢=-T.

™
16d3

Substituting these values in (19),
I
=" {M+ VMFT f}.
167

if the shaft be subjected to a twisting-moment, 7,, which would

produce the same stress, 2,
7,

D |
™
i—éa”'
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and 7, is said to be the twisting-moment equivalent to the given
bending-moment and twisting-moment acting simultaneously.
Comparing the two expressions for p, we get

T,.=M+ vM*+T*. . . . . (20
Similarly, the equivalent bending-moment is

M=yT, =4 (M+ VM FT. . . (21)



132 Principles of Mechanics CEAP. XTI

CHAPTER XIII
STRENGTH OF MATERIALS.

112. Stress, Breaking and Working.—Each part of a machine
must be capable of resisting the greatest straining actions that
may come on it. This condition fixes, as a rule, the smallest
possible section of the part below which it is not permissible to
go. In ordinary machines, where mere mass is sometimes re-
quisite, the section actually used may often with advantage be
considerably greater than the minimum ; but in bicycles, since
‘lightness’ is always sought after, though it should always be
secondary to ¢ strength,’ the actual section used must not be very
much greater than the minimum consistent with safety. The
magnitude of the stress on any piece depends on the general con-
figuration of the machine and of the arrangement of the external
forces acting on it. The strength of the various parts depends on
the physical qualities of the materials of which they are made, as
well as on their section ; this we will now proceed to discuss.

Breaking Stress—If a load be applied at the end of a bar and
be gradually increased, the bar will ultimately break under it. If
the bar be of unit section— one square inch—the load on it at the
instant of breaking is called the bdreaking fensile strength of the
material. A great number of experiments have been made from
time to time on the strength of materials, and the values of the
breaking tensile strength for all materials used in construction are
fairly accurately known.

Factor of Safety.—One method of designing parts of a machine
or structure is to fix arbitrarily on a working stress which shall not
be exceeded. This working stress is got by dividing the breaking
stress of the material, as determined by experiment, by an arbitrary
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number called a factor of safety. 'T'his factor of safety varies with
the nature of the material used, and with the conditions to which
the structure is subjected. Professor Unwin, in ¢ Elements of
Machine Design,’ gives a table of factors of safety, the factor vary-
ing from 3 for wrought iron and steel supporting a dead load, to
30 for brickwork and masonry subjected to a varying load. The
factor of safety should be large for a material that can be easily
broken by impact, and may be low for a material that undergoes
considerable deformation before fracture actually takes place.

113. Elastic Limit.—\We have already seen (sec. 81) that the
application of a load to a bar of what might be popularly called a
rigid material produces an elongation, and that this elongation is
proportional to the load applied up to a certain limit. If not
loaded beyond this limit, on removing the load the bar returns to
its original length, and no permanent alteration has been made.
If, however, the load applied be greater than the above limit, the
elongation produced by it becomes greater proportionally, and
on the load being removed the bar is found to be permanently
increased in length. The stress beyond which the elongation is
no longer proportional to the load, is called the e/astic limit.

Since the elongation is in most metals proportional to the load
applied up to this point, it has also been called the proportional
limit (German, °Proportionalititsgrenze’). In a few metals—
cast iron, brass—there is no well-defined proportional limit.

The total elongation of a bar loaded up to a stress just inside
the elastic limit is a very small fraction of its original length. On
increasing the load beyond the elastic limit and up to the break-
ing point, the elongation before fracture occurs, in the case
of most materials, is a very much greater fraction of the original
length.

‘T'able V. gives the breaking and elastic strengths and coefficients
of clasticity of most of the materials used in cycle making ; the
figures are taken from Professor Unwin’s ¢ Elements of Machine
Design.’

114. Stress-strain Diagram.—The relation between the
elongation and the load producing it can be conveniently exhi-
bited in the form of a diagram. Let the stress be represented by
an ordinate O y drawn vertically (not shown on the diagram), and
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the corresponding extension be a line 3 # drawn horizontally from
y.  The locus of the point p will be the stress-strain curve of the

, material.  Stress-strain curves for a number of different materials
subjected to tension are shown in figure r111.

It has been proposed to represent the comparative values of
materials for constructive purposes by figures derived from their
stress-strain curves. The work done in breaking a test piece,
reckoned per cubic inch of volume, may be used. This is pro-
portional to the area included between the base and the stress-
strain curve. Tetmajer’s ‘value-figure’ for a material is the
product of the maximum stress and the elongation per unit length.
It is the area of the rectangle formed by drawing from the final
point of the stress-strain curve lines parallel to the axes. Of the
materials represented in figure 111, ¢ Delta’ metal and aluminium
bronze have the highest ¢value-figures.’

115. Mild Steel.— Figure 111 shows the stress-strain curve for
mild steel, such as the material from which weldless steel tubes
are made. The straight portion O a represents the action within
the elastic limit. If the load be increased beyond that represented
by a, the extension takes place at a more rapid rate, as shown by
the slightly curved portion 2 4. At a point, 4, somewhat above
the elastic limit, @, a sudden lengthening of the bar takes place
without any increase of load, this being represented by the portion
b ¢ of the curve. The stress at which this occurs is called the
vield-point of the material. On further increasing the load, exten-
sion again takes place, at first comparatively slowly, but afterwards
more rapidly, until the maximum stress at the point & is reached.
Under this stress the bat elongates until it breaks. If, however,
the stress be partially removed after the maximum stress, 4, is
reached, as can be done in a testing machine, the curve falls
gradually, as at ¢, then more rapidly until fracture occurs at f.
The elongation represented by the curve up to £ takes place
uniformly over the whole length of the bar, that represented by
e f only on a small portion in the neighbourhood of the fracture.

In wrought iron, the yield-point is not so distinctly marked as
in mild steel ; the stresses at the elastic limit and at breaking are
less, the elongation before fracture is also less. The specific
gravity of wrought iron and mild steel is, on an average, 7°7.
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116. Tool 8teel.—For a tool steel of good quality, containing
about one per cent. carbon, the maximum stress may be much
higher ; the stress-strain curve takes the form shown in figure 111,

ROLLED COPPER (U)

X
N |

40

JllLlllllIlllllllllllllllllllllll)ll

o 10 20
PERCENTAGE ELONGATION

FiG. 111,

the extension being smaller, though the tenacity is very much
greater, than that of mild steel.

117. Cast Iron has no well-defined elastic limit ; in fact, the
stress-strain curve is not straight for any part of its length, so that
for cast iron the term °elastic limit,” though often used, has no
definite meaning.

118. Pure Copper varies greatly in tensile strength, according
to the mechanical treatment to which it has been subjected.
Rolling and wire-drawing both increase its tenacity. The stress-
strain curve for rolled copper (fig. 111) is from Professor Unwin’s
¢ The Testing of Materials of Construction,’

119. The Alloys of Copper with other metals form a most
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important series. Their mechanical properties are most fully
discussed in Professor Thurston’s ¢ Brasses, Bronzes, and other
Alloys.’

Brass contains 66-70 per cent. copper, and 34-30 per cent.
zinc ; sometimes a little lead. The stress-strain diagram (fig. 111)
shows that the stress at the elastic limit is very low in comparison
with the ultimate breaking stress.

Gun-metal is an alloy of copper and tin. The stress-strain
diagram (fig. 111) is from a metal containing 98 per cent. copper,
2 per cent. tin.

Ternary alloys of copper, zinc, and tin have been exhaustively
investigated by Professor Thurston. He finds the best proportion,
when toughness as well as tenacity is important, is copper 55, tin
05, ZINC 44°5.

Aluminium Bronze.—Copper and aluminium form a most
useful series of alloys. The stress-strain curve (fig. 111) is from
an alloy containing about 1o per cent. aluminium ; it shows clearly
the great strength and ductility of the material.

Alloys containing a much larger proportion of aluminium are
valuable where lightness is the first consideration, but since they
possess little strength and ductility, they can only be sparingly
used in structural work.

Delta metal is a copper-zinc-iron alloy, which can be cast and
worked hot or cold. It possesses great strength and ductility, as
is shown by the stress-diagram (fig. 111) from a bar 79 sq. in.
sectional area, tested by Mr. A. S. E. Ackermann at the Central
Technical College.

120. Aluminium.—A specimen of squirted aluminium, con-
taining 98 per cent. of the pure metal, was tested at the Central
Technical College by Mr. Ackermann ; the tenacity was 6°32 tons
per sq. in. ; the clongation in 8’ was 1°12”, of which ‘53" was in
the immediate neighbourhood of the fracture ; the general elonga-
tion may, therefore, be taken as 1o per cent. For comparison
this result is plotted in figure 111.

Pure aluminium has not sufficient strength and toughness to
be of much value as a structural material, though its lightness as
compared with other metals is a desirable quality. Some alloys,
containing a small percentage of aluminium, possess great strength,
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but they are, of course, heavy. It remains to be seen whether a
strong alloy, containing a large percentage of aluminium, and
therefore light, can be discovered. Such an alloy may possibly be
of value in cycle making.

The specific gravity of sheet aluminium is 267, of mild steel
77

121. Wood is not so homogeneous as most metals ; it is, as a
rule, much stronger along than across the grain. The fact that
wood joints are generally of low efficiency is against its use in
tension members of a frame. For compression members, where
there is no loss of strength at the joints, it may be used with
advantage in some cases, its compressive strength (see Table V1.)
being not much inferior, weight for weight, to that of the metals.
In beams of short span subjected to bending, it is, in some im-
portant cases, immensely superior, weight for weight, to metal.
The strength of a rectangular beam is proportional to its width,
the sguare of its depth, and the strength of the material from
which it is made (sec. 94), 7.e. proportional to 632/ If beams of
equal weight be made from wood and steel, the width 4 being the
same in both, the depth & of the wood beam will be greater than
that of the steel beam ; and the product 5% £ will be much greater
for the wood than the steel beam.

The rim of a bicycle wheel is subjected to compression and
bending (sec. 255). Since its width must be made to suit the tyre,
a wood rim will be much stronger than a solid steel rim of the
same weight ; or, for equal strengths, the wood rim will be the
lighter. A /ollowo steel rim will possibly be stronger than a wood
rim of equal weight.

Table VI., taken from Laslett’s ¢ Timber and Timber Trees,
gives the weights and strengths of a few woods.

122. Raising of the Elastic Limit.—ILet a bar be subjected
to a stress—rcpresented by the point 4 (fig. 111)—consider-
ably above its elastic limit. If the load be removed and the
bar be again tested, it will be found that it is elastic up to a stress
as high as that indicated by 4 Thus the elastic limit in tension
of a material like mild steel can be raised by simply applying an
initial stress a little above the limit required.

An important application of this principle occurs in the case

N\
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TaBLE VI.
SPECIFIC GRAVITY AND STRENGTH OF WooDSs.

Specific Transverse Tensile ' Vertical
Name of wood gravity, | load on stress on stress on

| water being pieces pieces ieces
| taken 1°000 | 2" x3"x72"  2"xa"x30" | 2"x2"x2"

Ibs. Ibs. per sq. in. lbs.

| . r sq. in.
- Ash, English . . .0 736 862 | 3,780 gf963 !
I',, American . - 480 | 638 | 5,495 l 5,494
' Elm, English. . .1 558 393 | 5460 - 5,785
i ,»» Canadian . " 748 920 9,182 l 7,418
Fir, Dantzic . . .. 582 " 877 ‘ 3,231 ' 7,104 |
,» Spruce, Canada . 484 670 | 3,934 4,852
. Kauri, New Zealand . ‘530 816 4,543 5,880
i Larch, Russian . . 646 626 4,203 | 5,985
I
| Oak, English. . . 735 . 776 7,571 | 7,640
,» French . . . ‘976 ! 878 8,102 ' 7,942
,» White, American . 983 804 7,021 | 6,964
Pine, Yellow . . . 554 505§ 2,027 4,172
4,666 . 6,462 |

,» Pitch, American . | ‘659 1,049

of Southard’s twisted cranks. Here the cranks are given a con-
siderable initial twist in the direction in which they are strained
while driving ahead ; their strength is considerably increased
thereby. A twist (sec. 109) is equivalent to a direct pull along
certain fibres, and a direct compression along other fibres at right
angles. The initial twist in Southard’s crank is, therefore, equi-
valent to raising the elastic limit of tension of the fibres under
tensile stress, and the elastic limit of compression of the fibres
under compressive stress. )

123. Complete Stress-strain Diagram.—The complete stress-
strain diagram of a material should extend below the axis O X ;
in other words, it should give the contractions of the bar under
compressive stresses, as well as elongations under tensile stresses.
Figure 112 represents such a curve, the point a denoting the
elastic limit in tension, and 4 the elastic limit in compression. If
the bar has had its elastic limit in tension raised artificially to the
point 4 (fig. 111), it is found experimentally that the elastic limit
in compression has been lowered, and thus the new stress-strain
curve would be somewhat as represented in figure 113.
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These considerations, when applied to the case of Southard’s
cranks, detract from the value of the initial twist. The line ¢ #
(ﬁg 109), which is the tension line when the

rider is pedalling ahead, has had its elastic

@ limit in tension artificially raised, and its elastic
r limit in compression artificially lowered by the
initial twist. When back-pedalling, 7 # becomes

the compression line. A twisted crank is

therefore weaker for back-pedalling than an

——— . .
untwisted crank of the same material.
124. Work done in Breaking a Bar.—
] material that gives very little extension before
. J breaking is said to be wanting in foughness,
§ and is not so suitable for structural purposes

as a material with 4 larger extension. The total
elongation of a material is usually expressed
as a percentage of its original length. If the actual instead of
the percentage elongations be set off horizontally (fig. 111), the
area included between the stress-strain curve, its end ordinate,
and the axis O X, represents the work done in breaking the bar.
A bicycle is a structure subjected not to steadily applied forces
but to impact. The relative value of a hard and a tough mate-
rial for resisting such straining actions may be illustrated by an
example.

Example.—Take a material like hardened steel, elastic up to
its breaking-point, so that its stress-strain diagram is as shown at
figure 114. Let its breaking-stress be 6o tons per square inch,
and £ = 12,000 tons per square inch. Then the extension at
breaking-point is

FiG. 112, FiG. 113,

E=_% - '00§.
12000
If the original length of the bar be 10 inches, the total elonga-
tion O x (fig. 114) will be ‘o5 inches, and the work done will be

the area of the triangle Oax;,
=} x 60 x ‘o5 = 1°5 inch-tons.

Take now a material like mild steel, and consider that its
stress-strain curve is quite straight up to the yield-point & (fig. 115).
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Let the yield-point occur at 15 tons per square inch ; then, taking
E, as before, 12,000 tons per square inch, and the original length
of the bar 10 inches, O x will be ‘o125 inches.
The work done in stretching the bar up to the |«
yield-point will be

} x 60 x "or25 = 0°375 inch-tons.

Consider both bars to be acted on by a
force of impact equivalent to a weight of 10 tons
falling through a height of } inch. The work
stored up in this falling weight will be

10 X } = 2inch-tons.

This must be taken up by the bar. But the
work done in breaking the hard steel bar of high
tenacity is only 1°5 inch-tons ; it would therefore be broken by
such a live load. The mild-steel bar would be stretched an
additional length, x x,, until the total area, 04 ' x|, was equal to
2 inch-tons. The area, 4 4, x, x, is therefore

— L

FiG. 114. FiG. 1s.

2 — 0°375 = 1°625 inch-tons.

The distance x x, will be

1625 _ .108inch.
IS

Thus the only effect of the impulsive load on the mild steel bar
is to stretch it a small distance, though the same load is sufficient
to break the bar of much higher tensile strength but with little or
no elongation before fracture.

The above examples show that the elongation before fracture
of a material is almost as important as its breaking strength in
determining its value as a material for bicycle building.

125. Mechanical Treatment of Metals.—The tenacity of a
metal is almost invariably increased by rolling, or by drawing
through dies. A metal to be drawn into wire or tube must be
strong and ductile. The finest wire is made from a metal in
which the ratio of the elastic to the ultimate strength is low. A
metal with very high tenacity has not generally the ductility neces-
sary for drawing into tubes or wire. The Premier Cycle Company,
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instead of using drawn tubes, which must be made from a steel
having a comparatively low tenacity, build up their tubes from flat
sheets bent into spirals, each turn of the spiral overlapping the
adjacent one, so that there are two thicknesses of plate at every
part of the tube (fig. 116). A steel of much higher tenacity can

FiG. 1n16.

be used for this process than could be successfully drawn into
tubes. These ‘helical’ tubes, therefore, have greater tenacity
but less ductility than weldless steel tubes, as is shown by the
comparative tests of helical and solid-drawn tubes 1 inch external
diameter, recorded in Table VII. For comparison with other
materials, the results of these tests are plotted on figure 111 ; the
final points of the stress-strain diagrams being the only ones
obtainable from the data, the curves are drawn dotted.

TasLE VII.
TENSILE STRENGTH oF HELICAL AND SoLin-DRAWN TUBES.

— "e: Extension
i Sectional Ultimate ¢ Appearance of !
Description rrpe in .
area stress 10 inches fracture
Sq. in.  Ibs. per sq. in.
. Helical 147 . o'1o 117,000 . " 12 per cent. silky
P T4a 5 b 3T | 88 per cent. granular
' s 20A . o'107 122,000 1’5 Granular
w200 . 0’134 130,000 34 Granular
, Solid-drawn ¢, . 0°106 80,000 18°7 Silky
' ", . 0°106 94,000 80 Silky

126. Repeated Stresses.—If a bar be subjected to a steady
load just below its breaking load, it will support it for an indefinite
period provided the load remains constant, neither being increased
or diminished. If the load is variable, however, the condition is
quite different. Wohler has shown that if the load vary from a
maximum 7 to a minimum 7%, fracture will occur when 7 is
less than the statical breaking load 7, after a certain number of
alterations from 7 to 73. The number of repetitions of the load

—

\
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before fracture takes place depends not only on 7' but on the
difference 7, — 7, between the maximum and minimum loads.
With a great range of stress the number of repetitions before
fracture is less than with a smaller range.

A steel axle tested by Bauschinger, which had a statical tensile
strength of 4o tons per square inch, stood at least two or three
million changes of load before breaking, with the following ranges
of stress :

Maximum stress Range of stress

Minimum stress r !
tons per sq. in. tons per sq. in. tons per sq. in.
—10°§ ! + 10°§ 210
o | 19°7 19°7
20 ’ 321 12'1
40 o

|

A fuller discussion of this subject is given in Professor
Unwin’s ‘Machine Design’ and ¢ The Testing of Materials of
Construction.’

The running parts of a bicycle—the wheels, chain, pedal-pins,
cranks, and crank-axle—are subjected, during riding, to varying
stresses. The range of stress on the spokes is probably small, so
that a high maximum stress may be used without running any
risk of fracture after the machine has been in use a considerable
time. The stress on a link or rivet of the chain varies from zero,
when on the slack side, to the maximum on the tight side. The
double change of stress on the pedal-pins, cranks, and crank-axle
takes place once during each revolution of the latter. A distance
of 5,000 miles ridden on a bicycle geared to 60" corresponds to
1,500,000 double changes of stress on the cranks and axle. If
these be made light (see chapter xxx.), no surprise need be ex-
pressed if fracture occurs at any time, after having run satisfac-
torily for one or two years.






PART 1I
CYCLES IN GENERAL

CHAPTER XIV

DEVELOPMENT OF CYCLES : THE BICYCLE.

127. Introductory.—Wheeled vehicles drawn by horses have
probably been used by all civilised nations. The cAariof of the
ancients was two-wheeled, the wheels revolving upon the axle.
Coming down to later times, the coack, a covered vehicle for
passengers, appears to have been first made in the thirteenth
century, the earliest record relating to the entry of Charles of
Anjou and his queen into Naples in a small carretta. The first
coaches in England are said to have been made by Walter Rippon
for the Earl of Rutland in 1555, and for Queen Elizabeth in 1564.
The weight of these early coaches was probably so great that for
centuries it seemed utterly impracticable to make a vehicle that
could be propelled by the rider. "With the growth of the
mechanical arts, at the beginning of this century, more attention
was given to the subject. Starting from the four-wheeled vehicles
drawn by a horse, the most obvious step towards getting a pedo-
motive vehicle was to make one of the axles cranked, and let the
rider drive it either direct or by a system of levers, the wheels
being rigidly fastened to the ends of the axle. Such a cycle is
illustrated in figures 117, 118. If this cycle had to travel in
straight lines or curves of large radius, as on a railway, it might
have been, apart from its weight, fairly satisfactory. A grave
mechanical defect was that in moving round a sharp curve one or
both driving-wheels slipped, as well as rolled, on the gtound, with
a corresponding waste of energy in friction.

L
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The first attempts at overcoming this difficulty consisted in
fastening only one wheel rigidly to the driving-axle, the other
running freely. This gave, however, a machine which did not
always respond to the steering gear as the rider wished ; in fact,
while a driving effort was being exerted, the machine tended to
turn to the side opposite to the driving-wheel (see chap. xviii.).
The introduction of the differential driving-axle, which allows both

FiG. 117.

FiG. n8.

wheels to be driven at different speeds, overcame this difficulty
completely without introducing any new ones.

‘The weight of the four-wheeler, and cven of the three-wheeler,
was, however, so great that it was not in this direction that cycles
were at first developed. A wooden frame for supporting: two
wheels was, of course, much lighter than one for three wheels ; for
this reason principally, bicycles were brought to a fair degree of
perfection before tricycles. The use of steel tubes for the various
parts of the frame made it possible to combine the strength and
lightness necessary for a practicable cycle, and laid on a sure basis
the foundations of the cycle-making industry.

Without attempting to give an exhaustive history of the de- .
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velopment of bicycles and tricycles, a short account of the various
types that have from time to time obtained public favour may be
given here. :

128. The Dandy-horse.—Figure 119 may be taken as the first
velocipede man-motor carriage. This was patented in France in
1818 by Baron von Drais. In ¢ Ackermann’s Magazine,’ 1819, an
account of this pedestrian hobby-horse is given. “ The principle

Fi;. 119.

of the invention consists in the simple idea of a seat upon two
wheels propelled by the two feet acting on the ground. The
riding seat or saddle is fixed upon a perch on two short wheels
running after each other. To preserve the balance a small board
covered and stuffed is placed before, on which the arms are laid,
and in front of which is a little guiding pole, which is held in the
haud to direct the route. The swiftness with which a person well
practised can travel is almost beyond belief, 8, 9, and even 10
miles may, it is asserted, be passed over within the hour on good

level ground.”
L2



148 Cycles in General CHAP. XIV.

129. Early Bicycles.—Messrs. Macredy and Stoney, in ‘The
Art and Pastime of Cycling,’ write : “To Scotland, it appears,
belongs the honour of having first affixed cranks to the bicycle ;

F1G. 120.

and, still stranger to relate, it was not to the ¢ hobby-horse,” but
to a low-wheeled rear-driver machine, the exact prototype of
the present-day Safety. The honour of being the inventor has
now been fixed on Kirkpatrick M‘Millan, of Courthill, Dumfries-

FiG. 121,

shire, though prior to 1892 Gavin Dalzell of J.esmahagow was the
reputed inventor. It seems, however, that Dalzell only copied
and probably improved on a machine which he saw with M‘Millan.
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MMillan first adapted crank-driving to the ‘ hobby-horse’ about
the year 1840, and it was not earlier than 1846 that Dalzell built a
replica of M‘Millan’s nfachine, a woodcut of which we reproduce
(fig. 120). M*Millan is said to have frequently ridden from Court-
hill to Dumfries, some fourteen miles, to market on his machine,
kecping pace with farmers in gigs.” Figure 121 illustrates the
‘French’ bicycle or * Bone-shaker,” which was in popular favour
during the sixties. The improvement on the Dandy-horse con-
sisted principally in the addition of cranks to the front wheel, so
that the rider was supported entirely by the machine.

In ¢ Velocipedes, Bicycles, and Tricycles,’” published by George
Routledge & Sons in 1869, descriptions and illustrations of the
bicycles, tricycles, and four-wheelers then in use are given. The
concluding paragraph of this little book may be quoted : “Ere 1
say farewell, let mecaution velocipedists against expecting too
much from any description of velocipede. They do not give
power, they only utilise it ; there must be an expenditure of power
to produce speed. One is inclined to agree with the temperate
remarks of Mr. Lander, C.E,, of Liverpool, rather than with the
extravagant enthusiasm of American or French riders. As a means
of healthful exercise it is worthy of attention. Certainly not more
than forty miles in a day of eight hours can be done with ease ;
Mr. Lander thinks only thirty. If this is correct, it does not beat
walking, though velocipedists affirm that double the distance can
be done with ease. Much will and must depend on the skill of
the rider, the state of the roads, and the country to be travelled.”

130. The Ordinary.—What has since been called the ‘ Ordi-
nary’ bicycle came into use early in the seventies. Figure 122
illustrates one made by Messrs. Humber & Co., Limited. The
great advance on the bicycle illustrated in figure 121 consisted
mainly in the use of indiarubber tyres, thus diminishing vibration
and jar, and consequently diminishing the power necessary to
propel the machine. As a direct consequence of this, a larger
driving-wheel could be driven with the same ease as the com-
paratively small driving-wheel of the French bicycle. The design
of the *Ordinary’ is simplicity itself, and it still remains the embodi-
ment of grace and elegance in cycle construction, though super-
seded by its more speedy rival, the rear-driving Safety. The
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motive power of the rider is applied direct to the driving-wheel ;
wheel, cranks and pedal-pins forming one rigid body. In this
respect it has the advantage over bicycles of later design, with
gearing of some kind or other between the pedals and driving-
wheel.

In the ‘Ordinary’ the mass-centre of the rider was nearly directly
over the centre of the wheel, so that any sudden obstruction to
the motion of the machine frequently had the effect of sending

F1G. 122,

the rider over the handle-bar. This element of insecurity soon
led to the introduction of other patterns of bicycles.

131. The ‘ Xtraordinary’ (fig. 123), made by Messrs. Singer
& Co., was one of the first Safety bicycles. The crank-pin was
jointed to a lever, one end of which vibrated in a circular arc
(being suspended by a short link from near the top of the fork),
the other end was extended downwards and backwards, and
supported the pedal. A smaller wheel could thus be used,
and the saddle placed further back than was possible in the
¢ Ordinary.’
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Fic. 123.

132. The Facile.—In the ‘Facile’ bicycle a smaller driving-
wheel was used, and the mass-centre of the rider brought further
behind the centre of the driving-wheel. This was accomplished

Fii. 124,

by driving the crank by means of a short coupling-rod from
a point about the middle of a vibrating lever; the end of
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this vibrating lever forming the pedal. The fork of the front
wheel was continued downwards and forwards to provide a fulcrum
for the lever. The motion of the pedal relative to the machine
was thus one of up-and-down oscillation in a circular arc, and was
quite different from that of the uniform circular motion in the
¢ Ordinary.” From the position of the mass-centre of the rider rela-
tive to the centre of the driving-wheel, it is evident that this bicycle
possessed a much greater margin of safety than the ¢Ordinary.’
Also, from the fact that the machine and rider offered a less surface
to wind resistance, the machine was easier to propel under certain
circumstances than the ¢ Ordinary.” In 1883, Mr. J. H. Adams
rode 242} miles on the road within twenty-four hours ; this was at
that time the best authentic performance on record.

133. Kangaroo.—Figure 125 illustrates the ¢ Kangaroo’ type of
front wheel crank-driven Safety introduced by Messrs. Hillman,

FiG. 12s.

Herbert, and Cooper, 1884. A smaller driving-wheel is used than
in the ‘ Ordinary’; the crank-axle is placed beneath and a little
behind the centre of the driving-wheel.  The crank-axle is divided
into two parts, since its axis passes through the driving-wheel ; the
front-wheel fork is continued downwards to support the crank-
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axle bearings; the motion of each portion of the crank-axle is
transmitted by chain-gearing to the driving-wheel. In a 1oo-mile
road race on September 27, 1884, organised by the makers of the
machine, the distance was covered by Mr. G. Smith in 7 hours
7 minutes and 11 seconds, the fastest time on record for any
cycle then on the road.

A geared dwarf bicycle is superior to an ¢ Ordinary’ in two
important respects, which more than compensate for the friction of
the extra mechanism. Firstly, the rider being placed lower, the
total surface exposed by the machine and rider is much less, the
air resistance is therefore less, this advantage being greatest at
high speeds. Secondly, since the speeds of the driving-wheel
and crank-axle may be arranged in any desired ratio, the speed
of pedalling and length of crank can be chosen to suit the
convenience of the rider, irrespective of size of driving-wheel;
while in an ¢ Ordinary’ the length of crank is less, and the speed of
pedalling greater, than the best possible values.

As regards safety, the ¢ Kangaroo’ is a little better than the
‘Ordinary,” but not so good as the ‘ Rover’ or * Humber’ Safety.
Two serious defects, which ultimately made it yield in popular
favour to the rear-driving Safety, existed. A narrow tread must
be kept between the pedals, and the consequent narrow width of
bearing of the crank-axle gives a bad design mechanically.
Again, the chains, however carefully adjusted initially, will, after
a time, get a trifle slack. In pressing the pedal downwards the
front side of the chain is tight, but when the pedal is ascending,
since it cannot be lifted direct by the rider, it is pulled up by the
chain, the rear side of which gets tightened. This reversal, taking
place twice every revolution, throws a serious jar on the gear.
This defect cannot, as in the * Humber’ with only one driving-
chain, be overcome by skilful pedalling.

134. The Rear-driving Safety was invented by Mr. H. J.
Lawson in 1879, but it was a few years later before it was in great
demand. The ¢ Rover ’ Safety (fig. 126), made by Messrs. Starley
and Sutton in 1885, was the first rear-driving bicycle that attained
popular favour. The cranks and pedals are placed on a separate
axle, the motion of which is transmitted by a single driving-chain to
the driving-wheel. This type is absolutely safe as regards headers
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over the handle-bar. Compared with the ¢ Kangaroo ’ gearing, the
single driving-chain is a great improvement, as its driving side

FiG. 126

may be kept tight continuously. The steering-hcad ot the front
wheel was vertical, and an intermediate handle-pillar was used,
with coupling-rods to the front fork. In a later design (fig. 127)

Fic. 127.

the front fork was sloped, and the stcering made direct ; this
machine thus formed the prototype of the modern rear-driving
bicycle.

~ TN



CHAP, XV, Development of Cycles: the Bicycle 158

Figure 128 is an illustration of the ‘Humber’ Safety dwarf-
roadster, made in 1885. In this all the arrangements of the
¢Ordinary’ may be said to be reversed ; the proverbial Irishman’s
description of it being “ The big wheel is the smallest, and the
hind wheel is in front.” The driving-wheel is changed from front
to back, the small wheel is placed in front, and the mass-centre
of the rider is brought nearer the centre of the rear wheel.

The ¢ Humber ’ Safety of 1885 is essentially the same machine
as that in greatest demand at the presentday. The improvements

FiG. 128.

effected since 1885, though undoubtedly of very great practical
importance, are merely improvements in details. Change in the
relative size of the front and back wheels, different design of frame,
and last, but not least, the introduction of pneumatic tyres,
account for the different appearances of the earliest and latest
Safeties.

Rear-driving Safeties were made by all the makers, the differ-
ence in bicycles by different makers being merely in detail. About
this time (1886) the number of Safety bicycles made per annum
began to increase very rapidly, while a few years later the number
of ¢ Ordinaries’ began to diminish.

135. Geared Facile.—The * Facile’ bicycle, with its small driv-
ing-wheel and direct link-driving from the pedal lever, necessitated
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very fast pedal action on the part of the rider. The ¢ Geared
Facile’ (fig. 124) enabled the pedalling to be reduced to any
desired speed. The connecting link in the * Geared Facile’ did
not work directly on the driving-wheel, but the crank shaft ran
loose co-axially with the driving-wheel, a sun-and-planet gear
being inserted between the crank and the wheel. Figure 129

Fi1G. 129.

shows a ‘ Geared Facile’ rear-driving bicycle, the usual sun-and-
planet gear being modified to suit the altered conditions.

136. Diamond-frame Rear-driving Safety.—From the date
of its introduction, the rear-driving Safety advanced steadily in
popular favour until, in 1887, it was the bicycle in most general
demand. In the preface to ¢ Bicycles and Tricycles of the Year
1888,” Mr. H. H. Griffin says : “ We made careful inquiries of all
those in a position to know as to the proportion of Dwarf
Safcties and Ordinary bicycles, and were not a little surprised
to hear that, taking the average through the trade, at least six
Dwarf Safeties are made to one Ordinary.” Up to the year
1890 the greatest possible varicty existed in the frames of the
rear-driving Safety, but they all agreed in having the distance
between the rear and front wheels reduced to a minimum. The
crank-bracket was placed just sufficiently in front of the driving-

\ A
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wheel to have the necessary clearance, the steering-wheel suf-
ficiently far in front to allow it in steering to swing clear of the
pedals and the rider’s foot. The down-tube, from the saddle to

F1G. 130,

the crank-bracket, was usually curved, both in the diamond-frame
and the cross-frame, or omitted altogether, as in the open-frame.
Up till 1890 the nearest approach to the now universally adopted

FiG. 131.

frame was that made by Humber & Co. (fig. 130). During these
years the diamond-frame was being more and more generally
adopted, and after Messrs. Humber introduced their rear-driving
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Safety, with long wheel-base and diamond-frame (fig. 131), it
became almost universal. By having several inches clearance
between the crank-bracket and the driving-wheel, it was possible
to use a straight tube from the saddle to the crank-bracket, while
the long wheel-base rendered the steering more reliable. In the
chapter on ‘Frames’ the reasons for the survival of the diamond-
frame and the practical extinction of all others will be given.

137. Rational Ordinary.—The admirers of the ¢Ordinary’
bicycle were loth to let their favourite machine fall into disuse,
and attempts were made to make it safer and more comfortable,
by placing the saddle further behind the driving-wheel centre,
by sloping the front fork, and by making the rear wheel larger
than was usual in the ‘Ordinary.” Such a machine was called a
¢ Rational Ordinary.’

138. Geared Ordinary and Front-driving Safety.—In 1891,
the Crypto Cycle Company—with whom Messrs. Ellis & Co., the
makers of the ¢ Facile’ and
‘Geared Facile’ had amal-
gamated—brought out a
Geared Ordinary. This
bicycle was in external
appearance just like a
‘Rational’; but the cranks,
instead of being rigidly
connected to the driving-
wheel, drove the latter by
means of an epicyclic gear
(see sec. 306) concealed
in the hub. ‘The number of revolutions of the driving-wheel
could thus be made greater than those of the crank ; in fact, the
machine could be geared up, just like a rear-driving Safety. The
size of the driving-wheel being reduced, a front-driving Safety was
obtained. Figurc 132 shows the ‘Bantam,’” the latest develop-
ment of the front-driver in this direction, with the front wheel
24 inches in diameter, and geared to 66 inches. The resem-
blance, in general arrangement at least, to the French bicycle
(fig. 121) will be apparent, though as regards efficiency of action the
two machines arc as wide apart as the poles. Figure 243 shows

Fi:. 132,
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the ¢ Bantamette,’ in which the frame is so arranged that the bicycle
may be ridden by a lady.

139. The @iraffe and Rover Cob.—The ‘ Ordinary’ had un-
doubtedly many good points which are missing in the modern
Safety, among which may be mentioned greater lateral stability
and steadiness in steering due to the high mass-centre. The
¢ Giraffe’ (fig. 133), by the New Howe Machine Company, is a
high-framed Safety, the saddle being raised as high as in the

Fic. 133.

‘Ordinary.” In the introduction to Leechman’s ¢ Safety Cycling,’
Mr. Henry Sturmey gives an enthusiastic account of the ¢ Giraffe,
and a comparison with the low-framed Safety.

The ‘Rover Cob’ (fig. 1 34), made by Messrs. J. K. Starley & Co.,
is at the opposite extreme, the frame being made so low that the
pedals will just clear the ground when rounding a corner at slow
speed. It is intended for those who may have fear of falling ;
the mounting can be done by simply pushing off from the ground.

140. Pneumatic Tyres.—Whether judged by speed perform-
ances on the road or racing track, or from additional comfort
and ease of propulsion to the tourist, the greatest advance in
cycle construction due to a single invention must be credited to
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Mr. James Dunlop, the inventor of the pneumatic tyre. A patent
for a pneumatic tyre had been taken out by Thompson in 1848,
but there is no record that he made a commercial success of
his invention. In 1890, Mr. James Dunlop, of Dublin, made
a pneumatic tyre for his son, and the results obtained by its
use being so astounding, arrangements were very soon made
for their manufacture. While in 1889 a pneumatic tyre was
unheard of, at the Stanley Bicycle Club Show, November-
December, 1891, from an analysis! of the machines exhibited, it
appears that 4o per cent. of the tyres exhibited were preumatic,

Fi1G. 134.

32} per cent. cushion, 165 per cent. solid, 10 per cent. inflated,
and the remainder, about 1 per cent., were classed as nondescript.
In the above classification, under pneumatic tyres are included
only those with a separate inner tube, the inflated being really
single-tube pneumatic tyres. Cushion tyres were made and used
as a kind of compromise between solids and pneumatics. The
proportion of pneumatic tyres to the total has grown greater year
by year, until now there is hardly a cycle made, for use in Britain
at least, with any other than pneumatic tyres.

141. Gear-cases.—The most troublesome portion of a modern
rear-driving bicycle is undoubtedly the chain and the accompany-
ing gear. The chain, however well made originally, is found to
stretch slightly under the heavy stresses to which it is subjected

L The Cyclist's Annual and Year-book for 1892.
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in ordinary working. If the distance between the centres of the
two chain-wheels—on the crank-axle and driving-wheel hub respec-
tively —over which the chain passes is unalterable, the chain will
ultimately get so slack that there will be a great risk of it over-
riding the teeth of the wheels, to the danger of the rider. All
chain-driven cycles are consequently provided with some means
of tightening the chain, 7e. of increasing the distance between
the centres of the two chain-wheels. Again, in an exposed chain,
it is practically impossible to lubricate perfectly the rubbing
parts, very little of the oil applied to the outside surface finding

Fis. 135.

its way in between the rivet-pins and the blocks of the chain.
Dust and grit from the road soon adhere to the chain and chain-
wheel, so that the frictional resistance of the chain as it is wound
on and off the chain-wheel is rapidly increased.

These considerations led Mr. Harrison Carter to introduce
the gear-case, the function of which is to exclude dust and
mud, and provide an oil-bath in which the lowest portion of the
chain may dip. The reduction of frictional resistance is perhaps
one of the least of the advantages pertaining to the use of the
gear-case ; one great advantage is that less trouble is given to the
rider, and chain adjustments need not be made so frequently. In

M
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fact, some makers claim that with an oil-tight gear-case the chain
does not stretch perceptibly, and no chain adjustments are neces-
sary. The author is not aware, however, that any maker has
ventured to place on the market a bicycle’ with gear-case but no
chain adjustment.

142. Tandem Bicycles.—When the success of the bicycle for
a single rider was assured, attempts were soon made to make a
bicycle for two riders. Figure 135 shows the ¢ Rucker’ Tandem
bicycle, made in 1884, one of the first successful tandem bicycles.
This consists practically of two ¢ Ordinary ’ driving-wheels and forks
connected together by a straight tubular backbone. At the front

FiG. 136.

end of this backbone there is an ‘ Ordinary ’ steering centre ; at the
other end it is connected to the head of the rear-wheel fork by a
frame which permits it to twist sideways. Figure 136 shows a later
tandem bicycle, also made by Mr. Rucker—probably the first
practicable machine of this type. It is practically a tandem
¢ Kangaroo.” In a paper on ¢ Construction of Cycles,’ read before
the Institution of Mec¢hanical Engineers in 1885, Mr. R. E

Phillips says, “ This tandem bicycle . . . eclipses the earlier, and
bids fair to prove the fastest cycle yet produced. The weight is
only 55 lbs., and it is, therefore, the lightest machine yet made to
carry two riders
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Figure 137 shows a front-driving chain-driven Safety Tandem,
made by Hillman, Herbert, and Cooper, 1887. Both riders
drive the front wheel, and both wheels are moved in steering.

FiG. 137.

The ‘Invincible’ Tandem Safety (fig. 138), and the ‘Ivel’
Tandem Safety (fig. 139), which was made convertible so that it

FiG. 138,

could be used as a single Safety, were among the first approxima-
tions to the present popular type of Tandem Safety, both riders
M2
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being placed between the wheels, and both driving the rear
wheel. It will be noticed that the front crank-axle is connected
by chain gearing to the rear crank-axle, the two axles rotating at
the same speed ; the second chain passes over the larger wheel
on the rear crank-axle and the chain-wheel of the driving-axle.

FiG. 139

Both riders have control of the steering, a light rod connecting
the front fork to the rear steering-pillar. The long wheel-base
of these bicycles adds to the steadiness of the steering at high
speeds, since (see fig. 202), for the same deviation of the handle-
bars, a machine with long wheel-base will move in a curve of
larger radius than one with a shorter wheel-base. The distance
between the wheel centres being much greater than in the
single machine, the
frame is subjected to
very much greater strain-
ing actions, and imper-
fect design will be much
more serious than in the
single machine.

Figure 140 is an ex-
ample of the present
popular type of Tandem bicycle made by Messrs. Thomson and
. James. The machine is kinematically the same as that of figure
. 138, the particular difference being in the rear frame, which is of

the diamond type, complctely triangulated.

Fi1G. 140.
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CHAPTER XV '

DEVELOPMENT OF CYCLES : TRICYCLES, QUADRICYCLES, &cC.

143. Early Tricycles.—No sooner was a; practicable bicycle
made than attention was turned to the three-wheeler as being the
safer of the two machines, and offering some’;advantages, such as
the possibility of sitting while the machine is at rest. It was very
early found that the greater safety of the thrée-wheeler was more
apparent than real. ¢ Velox,’” writing in 1869, says,  Strange as it
may appear to the un-
initiated, the tricycle is
far more likely to upset
the tyro than the bicycle.”

Figure 141 (from
‘Velox’s ’ book) represents
a simple form of tricycle
made in the sixties by Mr.

Lisle, of Wolverhampton,

known as the ‘German’

tricycle. It was, in fact, a

converted ‘ Bone-shaker’

bicycle, with the rear wheel

removed and replaced by

a pair of wheels running

free on an axle two feet

long. The motive power Fi. 141

was applied by pedals and cranks attached to the axle of the front
wheel. A number of tricycles were made on the same general
principle ; but the weight of the rider being applied vertically over
a point near the front corner of the wheel-base triangle, the margin
of lateral stability was small. Mr. Lisle also made a ladies’ double-

o,
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driving tricycle (fig. 142), in which the power was applied by
treadles and levers acting on cranks on the axle of the rear wheels.
Nothing is said about the axle of the rear wheels being divided,

Fi1G. 142.

80 it is probable that in turning round a corner the rear wheels
skidded, just as is the case with railway rolling stock.

In the ‘Dublin’ tricycle (fig. 143) the driving-wheel was behind,
and two steering-wheels placed in front ; the margin of stability
in case of a stoppage
was much greater
thaninthe ‘German’
tricycle (fig. 141).
Another point of
difference consisted
in the application
of the lever gear-
ing ; the pedals were
fixed on oscillating
levers, the motions
of which were com-
municated by crank
and connecting-rods
to the driving-wheel.

The ‘Coventry’ bicycle was at first made with lever gearing, but
chain gearing was very soon afterwards applied to it. The
¢ Coventry Rotary’ (fig. 144) was the most successful of the early

FiG. 143.
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single-driving tricycles. It may be interesting to note that this
type has been revived recently, the Princess of Wales having
selected a tricycle of this type.

Fi1G. 144.

If the masscentre be vertically over the centre of the wheel-
base triangle, the pressure on each wheel will be one-third of the

Fi1G. 14s.

total weight. Under certain circumstances this pressure is in-
sufficient for adhesion for driving, hence arose the necessity for
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double-driving tricycles. In the ¢ Devon’ tricycle, made in 1878
(fig. 145), which is fitted with chain gearing, the cog-wheels co-
axial with the driving-wheels are fitted loose on their axles, and
each cog-wheel drives its axle by means of a ratchet and pawl.
In rounding a corner, the inside wheel is driven by the chain,
while the outside wheel overruns its cog-wheel, the pawls of the
ratchet-wheel being arranged so as to permit of this.

In the ‘Club’ tricycle (fig. 146), made by the Coventry
Machinists Company in 1879, one of the wheels was thrown

Fi 146,

automatically out of gear when turning to one side or the other.
Later, the same company used a clutch gear, somewhat similar in
principle to the ratchet gear, but which had the advantage that
the clutch could come into action at any point of the revolution,
instead of only at as many points as there were teeth in the
ratchet-wheel.  The tricyele illustrated in figure 146 has only two
tracks, which, in the early days of tricycles, was supposed to be ot
some advantage, in so far that it was casier to pick out two good
portions along a bad picce of road than three.

A number of single and side-driving, rear-steering tricycles
(fig. 147) were made about the years 1879 and 1880, but on
account of their imperfect steering they were sometimes found
extremely dangerous, and their manufacture was soon abandoned
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in favour of double-driving rear-steerers, of which the ¢Cheyles-
more’ (fig. 148), made by the Coventry Machinists Company, was

FiG. 147.

one of the most successful. Tradesmen’s carrier tricycles are still
made of this type.

144. Tricycles with Differential Gear.—The front-steering,
double-driving tricycle with loop frame, as in figure 145, next

FiG. 148.

became more and more popular.  The invention by Mr. Starley
of the ¢Differential’ tricycle axle or balance-gear marks a great
step in the development of the three-wheeler. This gear, or its
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equivalent, has been ever since used for double-drivers, clutch and
ratchet gears having been abandoned.

As improvements in detail were slowly introduced, the lever
gear fell into disuse (which is easily accounted for by the fact that
with it gearing either up or down is impossible), and chain gearing
became universal. With chain gear, and the possibility of gearing
up, the driving-wheels were made gradually smaller and smaller,
with a consequent reduction in the weight of the machine.

The ¢ Humber ’ tricycle met with great success on the racing
path, but, on account of its tendency to swerve on passing over a

Fio. 140,

stone, its success as a roadster was not so marked. When used as
a tandem (fig. 149), with one rider seated on the front-frame sup-
porting the driving-axle, the tendency to swerve was reduced and
the safety increased (sce sec. 183). Ina later type this difficulty
was overcome by converting the machine into a rear-steerer, the
steering-pillar being connected by light levers and rods to the
steering-wheel. .

The loop-frame tricycle was gradually superseded by one with
a central frame, in which the steering-wheel was actuated direct
by the handle-bar, the result being the ¢ Cripper’ tricycle (fig.
150). In this, as made by Messrs. Humber & Co., the chain lies
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in the same plane as the backbone ; the crank-bracket being
suspended from the backbone and the gear being exactly central.

FiG. 150.

The axle is supported by four bearings, though the axle-bridge,
with four bearings, had already been used in the ¢ Humber’
tricycles.

Fis. 151

Among the successful tricycles of this period may be men-
tioned the ¢Quadrant,’ in which the steering-wheel was not
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mounted in a fork, but the ends of the spindle ran on guides in
the frame (see fig. 254), and the ‘Rudge Royal Crescent’ (fig.
151), in which the fork of the steering-wheel was horizontal, and
the steering-axis intersected the ground some considerable distance
between the point of contact of the steering-wheel.

Up to the year 1886 the ¢ Ordinary’ bicycle had a very great
influence on tricycle design, the driving-wheels of tricycles being
usually made very large (in fact, sometimes they were geared
down instead of up) and the steering-wheel small. The weight
of two large wheels was a serious drawback, while the excessive
vibration from the small steering-wheel was a source of great

Fi6. 152,

discomfort to the rider. The distance between the wheel centres
was usually made as small as possible, the idea being that the
tricycle should occupy little space. Common measurements for
, Cripper’ tricycles at this time were : Driving-wheels, 40 in.
diam. ; steering-wheel, 18 in. diam. ; distance between driving-
and steering-wheel centres, 32z in. ; driving-wheel tracks, 32 in.
apart. Weight : Racers, 40 lbs. ; roadsters, 7080 lbs.

The size of the driving-wheel has been gradually diminished,
that of the stecring-wheel increased, until now (1896) 28 in. may
be taken as the average value for the diameter of each of the
three wheels. The wheel centres have been put further apart,
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42-45 in. being now the usual distance, the comfort of the rider
and the steadiness of steering being both increased thereby.

¥FiG. 153.

The design of frame has also been greatly improved, so that the
weight of a roadster has been reduced to 40-45 Ibs. without in
any way sacrificing strength.

FiG. 154.

Figure 152 shows a tricycle by the Premier Cycle Company,
L.td., embodying these improvements. The frame and chain gearing
is almost identical with that of the bicycle ; the balance-gear and
axle-bridge, with its four bearings, being added.
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Figure 153 shows a tricycle by Messrs. Starley Bros., in which
the bridge is a tube surrounding, and concentric with, the axle,

Fi1G. 135,

and the gear is exactly central ; so that the frame is considerably
simplified, and the appearance of the machine vastly improved.

FiG. 156,

This may be taken as the highest point reached in the develop-
ment of the ¢ Cripper ’ type of tricycle.
145. Modern Single-dri~ing Tricveles.—Several successful
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single-driving rear-driver tricycles have been made, among them
being the ¢Facile Rear-Driver’ (fig. 154) and the ‘Phantom’

Fic. 157.

(fig. 155). In these the two idle (or non-driving) wheels run
freely on an axle supported by the front frame. These tricycles

Fic. 158,
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are subject to the same faults of swerving as the ¢ Humber’
tricycle.

Fi1G. 159.

An important improvement is effected by mounting each
wheel on a short axle, which can turn about a vertical steering-

F1G. 160

head placed as close as possible to the wheel, as in the ¢ Olympia *
(fig. 160), one of the most successful of modern tricycles.

146. Tandem Tricycles.—Tricycles for two riders were soon
~ wnght *¢ 2 relatively high state " erfectinn, and were almost,

1,
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it quite, as popular as tricycles for single riders. Among the
est may be mentioned the ¢ Rudge Coventry Rotary’ (fig. 156),

FiG. 161,

‘Humber’ (fig. 149), the ¢ Invincible’ rear-steerer (fig. 157),and
Centaur’ (fig. 158). Later,the ‘Cripper’(fig. 159) and the ¢ Royal

Fi.. 16a.
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made in 1886 by Mr. J. S. Warman, the weight of the rider
rested mainly on the two central wheels, the small side wheels
merely preventing the machine overturning when starting and
stopping. It was, in fact, a sociable bicycle with two side safety-
wheels added.

In the ¢ Nottingham Sociable’ tricycle (fig. 164), made by the
Nottingham Cycle Co. in 1889, each rider sat directly over the

FiG. 16s.

rcar portion of a ‘Safety’ bicycle, and the heads of the two
frames were united by a trussed bridge to a central steering-
head.

148. Convertible Tricycles.— A great many machines for
two riders were at one time made by adding a piece to a tricycle
so as to form a four-wheeler. Of these comvertible tricycles, as
they were called, the ¢ Royal Mail’ two-track machine (fig. 165)
and the ‘Coventry Rotary Sociable’ (fig. 162) may be noticed.

Figure 166 shows the ‘ Regent’ tandem tricycle, formed by
N2
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coupling the front wheel and backbone of a ¢ Kangaroo’ bicycle
to the rear portion of a ¢ Cripper ’ tricycle ; affording an example
of a treble-driving cycle.

Figure 167 shows a four-wheeler formed by coupling together
the driving portions of a *Humber’ and a ¢Cruiser’ tricycle,
affording an example of a guadruple-driving cycle, all four wheels
being used as drivers.

149. Quadricycles.—With the exception of the convertible
tricycles above referred to, comparatively few four-wheeled cycles
have been made. In 1869 ¢ Velox’ wrote : “ No description of
velocipedes would be perfect without some allusion to the favourite

Fic. 168.

our-wheeler of the past generation of mechanics.” Figures 117
and 118 show one of the best as manufactured by Mr. Andrews,
of Dublin. The frame was made of the best inch square
iron 7 feet long between perpendiculars, and was nominally rigid,
so that in passing over uneven ground either the frame was
severely strained or only three wheels touched the ground. The
two driving-wheels were fixed at the ends of a double cranked-axle
driven by lever gear, the path of each pedal being an oval curve
with its longer axis horizontal. While moving in a circle, the
driving-wheels skidded as well as rolled, since the outer had to
move over a greater distance than the inner.
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Bicycles and tricycles have almost monopolised the at
of cycle makers, and no practicable quadricycle was mac
Messrs. Rudge & Co. produced their ¢ Triplet’ quadricyc
168) in 1888. The front-frame supporting the two sid¢
ing-wheels can swing transversely to the rear-frame, so t!
four wheels always touch the ground, however uneven,
straining the frame. The same design was applied to a
cycle for a single rider.
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CHAPTER XVI

CLASSIFICATION OF CYCLES

150. Stable and Unstable Equilibrium.—Cycles may be
divided into two great classes, according as the static equilibrium
during the riding is stable or unstable. The former class may be

FiG. 169.

further separated into three divisions : (a) Tricycles, in which the
frame, supported as it is at three points, is a statically determinate
structure ; (8) Multicycles, having four or more wheels, the frame
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generally having a hinge or universal joint, so that the wheels may

adjust themselves to any inequalities of the ground. If the frame

be absolutely rigid it will be a statically indeterminate structure.

(¢) Dicycles of the ‘Otto’ type, with two wheels, in which the

mass-centre of the machine and rider is lower than the axle. No

machine of this class has ever been made, to the author’s knowledge.
Cycles with unstable equi-

librium may be divided into

three classes, according to

the direction in which the

unstable equilibrium exists :

Monocycles, having only one

wheel ; Bicpcles, having two

wheels forming one track ; and

F1c. 170. FiG. 171,

Dicycles, having two wheels mounted on a common axis. In all
monocycles the transverse equilibrium is unstable ; they may be
subdivided into two sub-classes, according as the longitudinal equi-
librium is stable or unstable. An example of the former sub-
class is shown in figure 169, in which the frame, carrying seat, pedal-
axle, and handle, runs on an inner annular wheel, 4, on the driving-
wheel 4 ; the central opening, B, being large enough for the body
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of the rider, while his legs hang on each side of the main wheel.
An example of the latter is shown in figure 170, and a sociable
monocycle of the former class for two riders in figure 171.

In bicycles, the transverse equilibrium is unstable and the
longitudinal equilibrium stable. In dicycles, the transverse
equilibrium is stable. They may be subdivided into two sub-
classes, according as
their  longitudinal
equilibrium is stable
or unstable.

The ‘Otto’ di-
cycle (fig. 172) is
the only example
of the former sub-
class, while none of
the latter class, as
already remarked,
have attained any
commercial import-
ance. A dicycle of
the latter type would ' Fie. g2,
be made with very
large driving-wheels, and the mass-centre of machine and rider
lower than the axis of the driving-wheel.

151. Method of 8teering.—Proceeding to the further division
and classification of bicycles, the first subdivision that suggests
itself takes account of the method of steering ; a bicycle being
said to be a front- or rear-steerer, according as the stcering-wheel
is in front or behind, while among tricycles there are also side-
steerers. A few bicycles have been made with double-steering.

The complete frame of the machine is usually divided into two
parts, called respectively the front-frame and the rear-frame,
united at the steering centre ; though sometimes that part to
which the saddle is fixed is called the ‘frame,” to the exclusion
of the other portion carrying the steering-wheel. It should be
pointed out that the stecring portion will sometimes be the larger
and heavier of the two, the * Humber’ tricycle (fig. 149) affording
an example of this. In the ‘Chapman Automatic-Steering’
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Safety (fig. 173) the saddle is not fixed direct to the rear-frame,
but moves with the steering fork. The complete frame is in this
_ case divided into three parts, which can move relative to each

Fic. 173.

other, on which are fixed the driving-gear, the steering-wheel, and

the saddle respectively.
Examples of double-steering are afforded by the ¢ Adjustable’

Safety (fig. 174), made by Mr. J. Hawkins in 1884, and by the

Fic. 174.

¢ Premier’ Tandem Safety (fig. 137), in each of which the forks
of both wheels move relative to the backbone.

a
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There have been very few rear-steering bicycles made, though
their only evident disadvantage is, that in turning aside to avoid
an obstacle, the rear-wheel may foul, though the front-wheel has_
already cleared. Nearly all successful types of bicycles have been
front-steerers.

152. Bicyocles, Front-drivers.—Bicycles may be divided into
front-drivers and rear-drivers, according to which wheel is used
for driving. The ¢ Rucker’ Tandem (fig. 135) is an example of a
bicycle in which both wheels are used as drivers ; but generally
only one wheel is used for driving. Each of these divisions may
again be subdivided into ungeared and geared.

Among ungeared front-drivers we have the ¢Bone-shaker,’ the
¢Ordinary,’ the ¢ Rational,’ the *Facile,’ the ‘Xtraordinary,’ and
the ¢Claviger’ (fig. 504). In this classification we regard as
ungeared those machines in which one revolution of the driving-
wheel is made for each complete cycle of the pedal’s motion.
Thus, any bicycle with only lever gearing will be classed as un-
geared, since with such mechanism it is, in general, impossible to
gear up or gear down.

Geared bicycles may be subdivided into toothed-wheel geared,
chain geared, and clutch geared. Among wheel geared front-
drivers we have the ‘Geared Ordinary,’ ¢ Front-Driver,’ the
‘Bantam,” the ‘Geared
Facile, the ¢Sun-and-
Planet ’ bicycle (fig. 479),
and the ‘Premier’ Tan-
dem Dwarf Safety (fig.
137)- Among chain
geared safeties we have
the ¢Kangaroo,” with
two driving chains, one
on each side of the

- driving-wheel, the ¢Ad-
justable’ Safety Road-
ster (fig. 174), and the ¢ Shellard Dwarf’ Safety Roadster (fig. 175).

A combination of toothed-wheel and chain gear was used in
the ¢ Marriott and Cooper’ Front-Driver.

Clutch geared bicycles have never been very successful, the

Fia. 17s.
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Brixton Merlin Safety (fig. 176) being about the only example of
this type. In the Metlin gear, a drum rotates on the axle at each
side of the wheel, round which is coiled a leather strap, the other

FiG. 176.

end being fastened to the pedal lever. When the pedal is pushed
outwards by the rider the drum is locked by a clutch to the axle,
and the effort is transmitted to the wheel. On the upstroke a
spring raises the
pedal lever. With
this gear any length
of stroke may be
taken, but the imper-
fect action of the
clutch is such that
the great advantages
due to the possibility
. of varying the length .

Fic. 177. of stroke are more

than neutralised.
Figure 177 shows a possible front-driving rear-steering geared
bicycle, the front hub having a ¢ Crypto’ or equivalent gear.

153. Bicycles, Rear-drivers.—Among ungeared rear-drivers
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may be mentioned the Rear-driving ¢ Facile’ and the American
¢Star’ (fig. 178).

Among toothed-wheel geared rear- dnvers we have the ¢ Burton,’
the Geared * Facile’ Rear-driver (fig. 129), the ¢Claviger’ Geared
(fig. 507), the ‘Fernhead’ Chainless Safety, driven by bevel-
gearing. Of chain geared rear-drivers, the present popular Safety

Fia. 178,

of the ‘Humber’ or ‘Rover’ type is the most important repre-
sentative.

In the ‘Boudard-geared’ Safety a combination of toothed-
wheels and chain gear is used, while the same may be said of the
two-speed gears that are applied to the ordinary type of chain-
driven safety.

This classification is represented diagrammatically on page 194.
From this diagram it will be secn that no successful type of rear-
steering bicycle has been evolved. Expcrimenters might with
advantage direct their cnergies to this comparatively untrodden
domain.
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154. Tricycles, 8ide-steering.—The classification of tricycles
may go on on similar lines to that of bicycles. There would be three
types —front-steer-
ing, side-steering,
and rear-steering.
Of side-steering tri-
cycles there are two
subdivisions : the
‘Rudge Coventry
Rotary’ (fig. 156)
being a side-driver,
while the ¢ Dublin’
(fig. 143) and the ‘Olympia’ (fig. 160) are back-drivers. No
side-steering, front-driving tricycle has been made, to our know-
ledge ; though we
can see nothing at
present to prevent
tandem tricycles
of this type (figs.
179-181)  from
being  successful
roadsters.  That
shown in figure
179 could be ridden by a lady in ordinary costume on the
front seat ; it would, perhaps, be slightly deficient in lateral
stability, as the mass-
centre would be near
the forward corner
of the wheel-base tri-
angle. That shown in
figure 180 would be
svperior in this re-
spect, while the weight

FIG. 181, on the driving-wheel

would still probably

be sufficient for all ordinary requirements. A type inter-
mediate (fig. 181) might be made with a ‘Crypto’ gear on the
front wheel hub, the two crank-axles being connected by a

F1G. 179.

Fi1G. 180.
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chain ; the frame would be simpler than in figures 179 and
180. ’

Tricycles are either single-driving or double-driving, according
as there are one or two driving-wheels. The only treble-driving
tricycle which has been yet put on the market is the tandem
made by Messrs. Trigwell and Co., by coupling the front wheel
and backbone of a ¢ Kangaroo’ to the rear portion of a ¢ Cripper’
(fig. 166). The drivingwheels of a double-driving tricycle are
invariably mounted on the same axle, and since in going
round a corner the wheels, if of equal size, must rotate at
different speeds, the driving-axle must be in two parts. In the
¢ Cheylesmore’ tricycle two separate driving chains were used
between the crank- and wheel-axles, the cog-wheel on the wheel-
axle being held by a clutch when driving in a straight line,
while in rounding a corner the wheel which tended to go the
faster overran the clutch, and all the driving effort was transmitted
through the more slowly moving wheel. Starley’s differential gear
(see sec. 189), allowing, as it does, both wheels to be drivers under
all circumstances, is now universally used for double-driving.

155. Front-steering Front-driving Tricycles.—The early
¢ Bone-shaker’ tricycle (fig. 141) is an ungeared example of this
class, while the ¢ Humber’ tricycle (fig. 149) is a geared tricycle of
this same class. The ‘ Humber ’ is a double-driver.

Single-driving tricycles of this division may be made by taking
a ‘Crypto’ or ‘ Kangaroo’ bicycle, and having two back wheels at the
end of a long axle. They would, however, be deficient in lateral
stability, unless used as tandems, on account of the load being ap-
plied over a point near the forward apex of the triangular wheel-base.

156. Front-steering Rear-driving Tricycles.— Of ungeared
cycles, Lisle’s early ILadies’ tricycle (fig. 142) and the ¢Club’
(fig. 146) are examples.

The geared tricycles may be subdivided into single-drivers and
double-drivers. Of the former class the ¢ Olympia’ (fig. 160), the
¢ Phantom’ (fig. 155), the ¢ Facile’ (fig. 154), the ¢ Claviger,” and
the ‘ Trent’ convertible (fig. 182) are examples.

The double-drivers may be conveniently subdivided into
direct-steerers and indirect-steerers.  The ¢Cripper’ (figs. 150,
152, 153), of which probably more examples have been made
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than all the other types put together, is a direct-steerer ;
so also is the Merlin (fig. 183). Among indirect-steerers we
may mention the ¢Devon’ tricycle (fig. 145), the ‘Club’ (fig

FiG. 18a.

146). The ¢Nottingham Sociable’ (fig. 164) formed by conver-
sion of two bicycles, and Singer's Omnicycle with clutch gear
(fig. 184), made in 1879, also belong to this division.

Fia. 183.

This classification of tricycles is shown diagrammatically on
page 193.

157. Rear-steering Front-driving Tricycles.—The ¢ Veloci-
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man,” a hand-tricycle made by Messrs. Singer & Co., of which
figure 241 represents an improved design for 1896, is an example
of thisclass. The ¢ Cheylesmore’ (fig. 148), made by the Coventry
Machinists Co., was one of the
most successful of the early
tricycles. Several tandem tri-
cycles were made on this type,
one of the most popular being
the ‘Invincible’ (fig. . 157), made
by the Surrey Machinists Co.,
Limited.

The tandem tricycles in
figures 179181, if made with
both rear wheels running freely
on the same axle, fixed to a rear
frame, would afford examples of
single-drivers of this class.

A rear-steering side-driving
tricycle was the ¢ Challenge’ (fig. 147), made by Messrs. Singer in
1879.

158. Quadricycles.—A great many quadricycles were made at
one time by adding a piece to a tricycle, so as to form a machine
for two riders (see sec. 148). The attachment of the extra
portion was usually made by means of a universal joint. The
‘one track Sociable (fig. 163) may really be classified as a four-
wheel cycle, though from the lack of the universal joint in the
frame it differs essentially from those mentioned above.

Rudge’s quadricycle (fig. 168), giving only two tracks and a
rectangular wheel base, is a very well designed machine of this
type. The steering gear is similar in principle to that used in the
¢Olympia’ tricycle. The front portion of the frame supporting the
two side-steering wheels is connected to the rear portion by a
horizontal joint at right angles to the driving-axle, so that the four
wheels may each touch the ground, however uneven, without
straining the frame. It is made as a single, tandem, and triplet.
Its stability is discussed in section 161.

‘The quadricycle with two tracks has some advantages as com-
pared with the tricycle, and may well repay further consideration

n

Fi:G. 184.
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by cycle makers and designers. If a satisfactory mode of support-
ing the frame on the wheel axles by springs could be devised, the
horizontal joint might be omitted, the design of frame simplified,
the stability of the machine increased, and additional comfort
obtained by the rider. If the two steering-wheels revolved inde-
pendently on a common axle, as in the ‘Phantom’ tricycle
(fig. 155), the design of the machine would be further simplified ;
the relation of the wheels to the frame being exactly the same as
is a four-wheeled vehicle drawn by a horse. This type of quadri-
cycle would, however, possess the same objection-
X able features as to swerving as the tricycles shown
~ in figures 149, 154, and 155. In a horse vehicle
the front axle is fixed to the shafts to which the
~ horse is harnessed, so that the axle cannot swerve
when one wheel meets an obstacle without dragging
the horse sideways. In this respect the horse
performs the same function as the front wheel of
a ¢ Cripper’ tricycle. A hansom cab is equivalent
to a ‘Cripper’ tricycle, and a four-wheeler to a
pentacycle (fig. 185), in which the rear portion trails after the
front.

159. Multicycles. — By stringing together a number of
¢ Humber’ or ‘Cripper’ frames with their crank-axles and pairs of
driving-wheels, a cycle of 4, 6, 8, or any even number of wheels
may be obtained. The steering of such a multicycle should be
effected by the front rider, the intersection of the first two axles
determining the radius of curvature of the path. The following
wheels should be merely trailing wheels, so that they may follow
in the required path.

/

Fi6. 18s.
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CHAPTER XVII

STABILITY OF CYCLES

160. Stability of Tricycles.—If a4 (fig. 186) be the points
of contact of the three wheels of a tricycle with the ground, it will
be in equilibrium under the action of the rider’s weight, provided

the perpendicular from the mass-centre Fic. 184,
of the rider and machine falls within

the triangle a6¢. If this perpendicu- z
lar fall at the point 4, the pressures of AR

the wheels on the ground can easily be
found by the principle of moments.
Let W be the total weight of the rider
and machine, w,, w,, and v, the pres-
sures of the wheels at a, 4, and ¢ on
the ground. Then taking moments
about the line 4 ¢, draw perpendiculars
aa,and dd, to bc. We then have

Wxdd =w, xaa,

or wa=“' wo. ... (1)

aa,

Similar expressions for w, and w, can
be found. Fic. 187.

If the point 4 fall outside the triangle a & ¢, the tricycle will
topple over.

161. Stability of Quadricycles.—If the quadricycle be made
with the steering-axle capable of turning only round a vertical
axis, as in the case of an ordinary four-wheeled carriage drawn by
horses, the mass-centre of the machine and rider may lie vertically
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above the rectangle a 6cd (fig. 188), q, 4, ¢ and 4 being the
points of contact of the wheels with the ground. But if one of
the axles be hinged to the frame, so as to allow the four wheels
to be always in contact with the ground, how-
ever uneven—as in the case of the ‘Rudge’
quadricycle (fig. 168)—the mass-centre of
machine and rider, exclusive of front portion
a b, must lie vertically above the triangle
e ¢ d, e being the intersection of the plans of
the steering-axle and hinge joint. If the
perpendicular from the mass-centre of ma-
chine and rider fall between ¢ ¢ and 4 ¢, the
Fic. 188. wheel at 4 will lift from the ground, and the
portion ¢ ¢ 4 of the machine will continue
to overturn until stopped by coming in contact with the portion
abd.

In a tandem quadricycle formed by attaching a trailing wheel,
d (fig. 189), to a ‘ Cripper’ tricycle, a 4 ¢, by means of a universal
joint at ¢, the mass-centre of the machine and
riders must lie vertically above and inside the
quadrilateral ¢ 6 ¢d. If the joint e be behind
the axle, 4 ¢, another condition must be satisfied,
viz. the vertical downward pressure at ¢, due to
the weight on the trailing frame, must not be suffi-
cient to tilt the triangle @ 4 ¢ about the axle 4 ¢.
This condition will in general be satisfied if the
joint ¢ be not far behind the axle.

162. Balancing on a Bicycle.—A bicycle has
only two points of contact with the ground, and
a perpendicular from the mass-centre of machine
and rider must fall on the straight line joining them. If the
bicycle and rider be at rest, the position is thus one of unstable
equilibrium, and no amount of gymnastic dexterity will enable
the position to be maintained for more than a few seconds.
If the mass-centre get a small displacement sideways, the dis-
placement will get greater, and the machine and rider will fall
sideways. In riding along the road with a fair speed the mass-
centre is continually receiving such a displacement. If the rider

FiG. 189,
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steer his bicycle in an exact straight line this displacement will get
greater, and he and his bicycle will be overturned, as when at
rest. But, as every learner knows, when the machine is felt to be
falling to the left-hand side, the rider steers to the left—that is,
he guides the bicycle in a circular arc, the centre of which is
situated at the left-hand side. In popular language, the centri-
fugal force due to the circular motion of the machine and rider
now balances the tendency of the machine to overturn ; in fact,
the expert rider automatically steers the bicycle in a circle of
such a diameter that the centrifugal force slightly overbalances
the tendency to overturn, and the machine again regains its
perpendicular position. The rider now steers for a short interval
of time exactly in a straight line. But probably the perpendicular
position has been slightly overshot, and the machine falls slightly
to the right-hand side. The rider now unconsciously steers to
the right hand, that is, in a circle having its centre to the right-
hand side.

If the track of a bicycle be examined it will be found to be,
not a straight line, but a long sinuous curve. With beginners the
waviness of the curve will be more marked than with expert
riders; but even with the latter riding their straightest the
sinuosity is quite apparent. A patent had actually been taken
out for a lock to secure the steering-wheel of an ¢ Ordinary’ bicycle,
the purpose being to make it move automatically in a straight
line. The above considerations will show, as clearly as the actual
trial of his device probably did to the inventor, the absurdity of
such a proceeding.

It would be possible to ride a bicycle in a perfectly straight
line with the steering-wheel locked, by having a fly-wheel capable
of revolving in a vertical plane at right angles to that of the
bicycle wheels, and provided with a handle which could be turned
by the rider. If the bicycle were falling to the right, the fly-wheel
should be driven in the same direction ; the reaction on the rider
and frame of bicycle would be a couple tending to neutralise that
due to gravity causing the machine to fall.

Lateral Osallation of a Bicycle.—From the above explana-
tion of the balancing on a bicycle, it will be seen that the
machine and rider are continually performing small oscillations
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sideways—the axis of oscillation being the line of contact with
the ground—simultaneously with the forward motion. The bi-
cyclist and his machine may thus be roughly compared to an
inverted pendulum. The time of vibration of a simple pendulum
is proportional to the square root of its length, a long pendulum
vibrating more slowly than a short one. In the same way, the
oscillations of a high bicycle are slower than those of a low one ;
i.e. the time taken for the mass-centre to deviate a certain angle
from the vertical is greater the higher the mass-centre ; a rider
equally expert on high and low bicycles will thus be able to keep
a high bicycle nearer the exact vertical position than he will a low
bicycle. In other words, the angle of swing from the vertical is
greater in the ¢ Safety ’ than in the ¢ Ordinary.’

The track of an ¢Ordinary’ will therefore be straighter—that
is, made up of flatter curves—than that of a ¢ Safety,” both bicycles
being supposed ridden by equally expert riders.

163. Balancing on the Otto Dicycle.—In an ‘Otto’ dicycle
at rest the mass-centre of the frame and rider is, in its normal

position, vertically above the axle

of the wheels ; the machine is thus

in stable equilibrium laterally and

in unstable position longitudinally.

In driving along at a uniform speed

against a constant wind resistance,

F (neglecting at present other re-

sistances), the mass-centre, G, is in

its normal position, a short dis-

tance, /, in front of the axle (fig.

, 190). While the rider exerts the

(4 . Fi driving effort the wheel exerts the

oo force F, on the ground, directed

backwards, and the reaction of the ground on the wheel is an equal

force, F,, in the direction of motion. The force #; is equivalent

to an equal force %, at the axle and a couple F7, » being the

radius of the driving-wheel. The couple Fr is applied by the

pull of the chain to the rigid body formed by the driving-wheel

and axle ; therefore, if 7" be the magnitude of this pull and », the
radius of the cog-wheel on the axle, 777, = Fr
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Consider now the forces acting on the rigid body formed by
the frame and rider : these are, the reaction at the bearing C, the
weight W acting downwards, the wind-resistance, ] and the pull
of the chain 7. Since the frame is in equilibrium, the moment
of all these forces about any point must be zero. Taking the
moments about C we get

Wi—Fli=Tr=Fr. . ... (2

Suppose now the mass-centre, G, to fall a little forward of the
position of equilibrium, so that the moment of /# about C be-
comes W /'; in order that equilibrium may be established the
pull of the chain must have a greater value, 77, thus W/!' — F/,
= 7' r,. This increased pull on the chain is produced by the
rider pressing harder on the pedals ; in other words, by driving
harder ahead.

In the same way, should the mass-centre, G, fall a little behind
the position of equilibrium, the tendency to fall backward is
checked by the rider easing the pressure on the pedals, s.e. by
slightly back-pedalling.

The frame and rider in an ¢Otto’ dicycle thus perform oscilla-
tions about the axle of the machine ; the length of the inverted
pendulum is much less than in the ‘Ordinary’ or even the ‘Safety’
bicycle, and the backward or forward oscillation is greater than
the lateral oscillation in a bicycle.

164. Wheel load in Cycles when driving a.hesd.—A great
deal of misconception exists as to the modification of the wheel
loads, due to driving ahead. If the cycle move uniformly, and the
several resistances be neglected, the wheel loads will, of course, be
the same as if the cycle were at rest, and therefore will depend
only on the position of the mass-centre of machine and rider
relative to the wheels. If the only resistance considered is the
wind pressure F, (fig. 191), the load on the front wheel will be
decreased, and that on the rear wheel increased, by the amount &,
determined by the equation

Fh=RI; . . . . . . . (3

/ being the wheel-base, and 4, the distance of the centre of wind
pressure above the ground. Frictional resistances, including the
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friction of the bearings and gearing and the rolling friction of the
wheels on the ground, make no modification of the distribution of
wheel load ; the former, because they are internal forces, and do
not in any way affect the external forces, the latter because they
act tangentially to the ground, and must be balanced by an equal
and opposite reaction of the ground on the driving-wheel.

If the speed of the cycle be increased, the forces due to
acceleration can be easily shown as follows : Consider the mass
of the machine and rider to be concentrated at the mass-centre
G, and that the wheels and frame are weightless ; then, to produce

theacceleration, theframe

must act on the mass,and

the mass react on the

frame with an equal but

opposite force, f. Intro-

duce at the point of con-

tact of the driving-wheel

with the ground twoequal

and opposite forces, f,

and f, (fig. 191), each

equal and parallel to f;

then f is equivalent to

Fii. 191, theforce £;,and the couple

formed by the equal and opposite forces f and f,. The force f;

must be equilibrated by the reaction 2 of the ground on the

driving-wheel, the couple tends to diminish the weight on the

front wheel, and increases that on the rear wheel, by an amount,
R, given by the equation

Ri=fhy « . . . « . . . (4

4, being the height of the mass-centre, G, above the ground.

In the most general case, the external forces acting on the
system of bodies formed by the machine and rider are shown in
figure 191. These are the resistance £, due to the increase of
speed, the wind pressure £, the resistance of the wheels to
rolling, %, the reaction of the ground on the driving-wheel, /, the
weight, 17, of the machine and rider, and the vertical reactions,
R, and R,, on the wheels. /2, £, and &, are determined so as to
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produce equilibrium with the other forces. Pressure exerted on
the pedal does not in any way modify the reactions R, and R,,
except so far as it affects, or is affected by, the resistances 7, £,
and f; i.e. work spent in overcoming resistances of the mechanism
does not tn any way affect the wheel loads.

165. Stability of Bicycle moving in a Circle.—Let » be the
radius of the circle in which the cycle is moving, /¥ the weight of
the rider and machine, and G the
position of the mass-centre (fig.
192). We have already seen that a
body of mass, W lbs., moving in a
circle of radius, », with speed v, has

. . 2?
a radial acceleration, = ; and must
r

be acted on by a radial force
Wt Ibs. N A

vl s. Now, considering the
weight of the rider and bicycle
concentrated at G, and that it is
transmitted from G to the ground
by a weightless frame, the only
forces acting on the frame are the
weight I¥, acting vertically down-
wards at G, and the reaction from
the ground, £. The resultant, C, of the two forces, I¥ and R,
must therefore be equal to the horizontal radial force

et
&r

Fii. 193. Fic. 192

(s)

required to give the mass the circular motion, and the line of action
of R must therefore pass through G. Draw a4 equal to IV

7 92
(fig. 193) vertically downwards, and 4 ¢ equal to I; :’ horizontal.

Then the reaction, R, is represented in magnitude and direction
by ¢ a. When the rider is moving steadily in a circle the machine
must be inclined at the angle ¢ a 4 to the vertical, so that the re-
action, &, from the ground may pass through G (see sec. 45).
166. Friotion between Wheel and Ground.—When there
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is no friction between two surfaces in contact the mutual pressure
is at right angles to the surfaces. Any component of force
parallel to the common surface of contact can only be due to,
friction. In the case of a bicycle moving in a circle, the centri-
petal force is supplied by the friction between the wheel and the
ground. If the surface of the road be greasy, the friction is in-
sufficient to provide the proper amount of force, and the force of
reaction of the ground, #, together with the weight of the machine
and rider, ¥ form a couple (fig. 192) tending to overturn the
machine.

Now when a couple acts on a rigid body free to move, the
body turns about its mass-centre (see sec. 66). In the case of the
bicycle (fig. 192), the mass-centre, G, will have a simultaneous
motion downwards, so that the final result will be that the wheel
will slip to the right.

Figure 192 also illustrates the forces acting on a bicycle which
is being steered in a straight line, and which has already attained
a slight inclination to the vertical ; the weight, 17, of the rider and
the reaction of the ground, #; form a couple tending to increase
still further the deviation from the vertical.

167. Banking of Racing Tracks.—In racing tracks, the surface
of the ground at the corners is sloped, as at 4 4 (fig. 192), so as
to be perpendicular to the average slope of the bicycles going
round the corner. From (5) it is evident that this slope depends
on the speed of the cyclists and the radius of the track. Table
VIII. gives the necessary slopes for different speeds and radii of
track.

Example.—Taking a speed of twenty-four miles per hour and

24 x 5280

the radius of the track 160 feet, v = 3600 = 352 ft. per

<) <22 .
second, W becomes  357? W= "'24 Wj;that is, b¢c =
r ‘2 x 160

‘24 a & (fig. 193), and therefore the surface of the track must be laid
at a slope of 24 vertical to 1oo horizontal. If the track be laid at
this slope, the wheel of a bicycle moving at a less speed than
twenty-four miles an hour will tend to slip downwards towards the
inside of the track, that of a bicycle moving at a higher speed will
tend to move upwards towards the outside.
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TaBLE VIII.— BANKING OF RACING TRACKS.
Parts Vertical Rise in 100 Parts Horizontal.

nhg::' of | Speed, miles per hour.
| track 20 | 25 I 30 ) 35 | 40
50 ft. 534 - 834 12072 1637 213°7
100 ft. 267 417 60°1 817 106°8
! 150 ft. 17°8 278 40°1 54°5 71°2
200 ft. 13°3 209 30°0 40°9 534
250 ft. 107 l 167 240 327 227
300 ft. 89 i 139 200 | 272 356

If the width of the track be considerable, the slope should be
greater at the inner than at the outer edge, for a given speed. In

400
otl o
nﬂ\ts
350
300 povr
35 mms P”
250
o
30 mile per b
200 tf
. hour
Jes per
r 2
50 20 miles Per hour
r
00 &4 Lol | | 1 J
50 200 /50 200 250 300 Feel
Radlys 9f Irack
FiG. 194.

this case it can be shown by an easy application of the integral
calculus, that if R be thelradius at any point of the track and
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v the corresponding height above a certain horizontal datum
level

vﬂ
y="log R . ... (6)

feet and seconds being the units.
If 7 be the speed in miles per hour,

y=-15383 PZlogR2 . . . . . ()

y and R being in feet, and log R being the ordinary tabular
logarithm.

‘Table IX. contains the values of y for different values of R
from 40 to 300 feet, and at various speeds from 20 to .40 miles per
hour, and figure 194 shows cross sections of tracks for these various
speeds.

TaBLE IX.—BANKING OF RacING TRACKS.

Elevation above a datum level, in feet.

Radius Speed, miles per hour i
feet 20 25 : 30 35 4o
40 984 1538 2215 30174 3937
50 104°5 1633 ' 2352 320°'1 4181
60 109°4 170'9 . 2462 3350 4376
70 113°5 1774 | 2554 347°6 454°1
8o 117°1 1830 . 2635 3586 4684
90 120°2 187'.9 | 270§ 368-2 4810
100 123°1 192'3 | 2769 3769 4922
110 1256 196'3 ' 2826 3846 | 5024
) 120 1279 1999 | 2878 3918 ' 5117
. 130 130°5 2032 | 2926 3983 . 5202 |
140 1320 2063 | 297°1 ' 4043 . 5281
150 1339 2092 | 301:3 | 4100 5356
1
175 1380 2156 | 310§ 4226 §52°0
200 141°6 2212 3186 4336 566°3
225 144°7 226°1 3256 4432 5789
250 | 14775 2305 3320 4518 590°1
| 275 150°1 2345 3377 4594 600°3
| 300 152°4 2381 3429 466°7 6096

Since the circumference of the inner edge of the track is less
than that of the outer edge, when record-breaking is attempted,
the rider keeps as close as he safely can to the inner edge ; conse-
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quently the average speed of riding is greatest at the inner edge.
On this account, the convexity of the cross-section is, with advan-
tage, made greater than shown in figure 194.

168. Gyroscopic Action.—In the above investigation, it has
been assumed that the weight of the wheels is included in that of
the rider and machine, and no account has been taken of their
gyroscopic action. We have already seen (sec. 70) that if a wheel,
of moment of inertia /, have a rotation, », about a horizontal
axis, and a couple, C, be applied to the axle tending to make it
turn in a vertical plane, the axle will actually turn in a horizontal
plane with an angular velocity of precession

c
0—.](”........(8)
Thus, in estimating the stability of a wheel rolling along a circular
arc, both centrifugal and gyroscopic actions must be considered.

Let R be the radius of the track described by the bicycle,
r the outside radius and r, the radius of gyration of the wheels,
V the speed of the cyclist, and = the weight of the wheels; then

14 Vv
0=-k, I=vr? o= o
Sub;tituting in formula (8) we get
wl?r?
C=‘._Rr" R ()}

1.e. the gyroscopic couple required, in addition to the centrifugal
couple, is proportional to the square of the speed, inversely pro-
portional to the radius of the track, and approximately propor-
tional to the radius of the cycle wheels.

Example.—1f the total weight of the machine and rider be
180 lbs., the weight of the wheels 8 lbs., speed 30 miles per hour
=44 feet per sec., the radius of the track 100 feet, » the radius
of the wheel 14 in. = }§ feet, and », = 13 in. = }3} feet, we
get V = 44 ft. per sec., and

2 2
C= Bxaqtxaz? _ 155°8 foot-poundals
100X 14X 12

= 4°84 foot-lbs.
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of the forces 3 and W cut the ground at a point, g, outside the
wheel base, a /¢, the machine will overturn. Hence the necessity
for tricyclists leaning over towards the inside of a curve whcn
moving round it.

Again, if the force F, be greater than u W, the tricycle will
slip bodily sideways, p being the co-efficient of sliding friction
between the tyres and the ground. This slipping is often experi-
enced on greasy asphalte or wood paving.

170. Side-slipping.—The side-slipping of a bicycle depends
on the coefficient of friction between the wheels and the ground,
and the angle of inclination of the bicycle to the vertical. The
coefficient of friction varies with the condition of the road, being
very low when the roads are greasy ; when the roads are in this
condition the bicyclist, therefore, must ride carefully. The con-
dition of the roads is a matter beyond his control, but the other
factor entering into side-slipping is quite within his control. In
order to avoid the chance of side-slipping, no sharp turns should
be made on greasy roads at high or even moderate speeds. To
make such turns, we have seen (sec. 165) that the bicycle must be
inclined to the vertical, this slope or inclination increasing with
the square of the speed and with the curvature of the path. At
even moderate speeds this inclination is so great that on greasy
roads there would be every prospect of side-slipping taking place.
If a turn of small radius must actually be effected, the speed of
the machine must be reduced to a walking pace or even less.

A well-made road is higher at the middle than at the sides.
When riding straight near the gutter the angle made by the plane
of the bicycle with the normal to the surface of the ground is
considerable. If the rider should want to steer his bicycle up
into the middle of the road, in heeling over this angle is increased.
This may be safely done when the road is dry, but on a wood
pavement saturated with water it is quite a dangerous operation.
With the road in such a condition the cyclist should ride, if
traffic permit, along its crest.

The explanation given above (sec. 162) that in usual riding the
lateral swing of a ‘Safety’ is greater than that of an ¢ Ordinary,’
explains why side-slipping is more often met with in the lower
machines. The statement of some makers that their particular

P
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arrangement of frame, gear, or tread of pedals, &c., prevents side-
slipping is utterly absurd ; the only part of the machine which
can have any influence on the matter being the part in contact
with the ground—that is, the tyres. Again, the statement of
riders that their machines have side-slipped when going straight
and steadily cannot be substantiated. A rider may be going
along quite carefully, yet if his attention be distracted for a moment,
and he give an unconscious pull at the handles, his machine may
slip.

Side-slipping with Pneumatic Tyres.—A pneumatic tyre has a
much larger surface of contact with the ground than the old solid
tyre of much smaller thickness. This fact, which is in its favour
as regards ease of riding over soft roads, is a disadvantage as
regards side-slipping on greasy surfaces. The narrow tyre on a
soft road sinks into it, the bicycle literally ploughing its way
along the ground ; and on hard roads the narrow tyre is at least
able to force the semi-liquid mud from beneath it sideways, until
it gets actual contact with the ground. The pressure per square
inch on the larger surface of a pneumatic tyre in contact with the
ground being very much smaller, the tyre is unable to force the
mud from beneath it ; it has no acfwa/ contact with the ground,
but floats on a very thin layer of mud, just as a well lubricated
cylindrical shaft journal does not actually touch the bearing on
which it nominally rests, but floats on a thin film of oil between
it and the bearing. The coefficient of friction in such a case is
very small, and a slight deviation of the bicycle from the vertical
position fe. steering in any but a very flat curve—may cause
side-slip.

The non-slipping covers, now almost entirely used on roadster
pneumatic tyres, are made by providing projections of such small
area that the weight of the machine and rider presses them
through the thin layer of mud into actual contact with the ground.
The cocfficient of friction under these circumstances is higher,
and the risk of side-slip correspondingly reduced.

Apparent Reduction of Coefficient of Friction.—While the
driving-wheel rests on a greasy road a comparatively small driving
“orce may cause the wheel to slip circumferentially on the road,

natead af alling gt Thie «bir]ﬁing n he “'heel’ though
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primarily making no difference in the conditions of stability, in a
secondary manner influences side-slipping considerably.

Let a body A/ (fig. 195) of weight ¥, resting on a horizontal
plane, be acted on by two horizontal forces, @ and 4, at right
angles. Let u be the coefficient of friction, and

i
let at first only one of the forces, 8, be in action. Yi ?
To produce motion in the direction A X, 5 must |
be greater than u I#. Now, suppose the body A7 H
is being driven, under the action of a force g, in — x

the direction A7 ¥, in this case a much smaller b
force, 4, will suffice to give the body a component a
motion in the direction /7 X. The actual motion
will be in the direction A7 R, and since friction
always acts in a direction exactly opposite to that of the motion,
the resultant force on the body A/ must be in the direction
M R. Let F be this resultant force ; its components in the
directions 47 X and M Y must be 4 and a respectively. Now, if
the force a be just greater than u I, it will be sufficient to cause
the body to move in the direction 7 ¥, and any force, 4, however
small, will give A7 a component motion in the direction A/ X.

A familiar example illustrating the above principle, which has
probably been often put into practice by every cyclist, is the
adjusting of the handle-pillar in the steering-head. If the handle-
pillar fits fairly tightly, as it ought to do, a direct pressure or pull
parallel to its axis may be insufficient to produce the required
motion, but if it be twisted to and fro —as can easily be done on
account of the great leverage given by the handles—while a slight
upward or downward pressure is exerted, the required motion is
very easily obtained.

In the ¢ Kangaroo’ bicycle the weight on the driving-wheel was
less than in either the * Rover Safety’ or in the ¢ Ordinary.” On
greasy roads it was easy to make the driving-wheel skid circum-
ferentially by the exercise of a considerable driving pressure. This
circumferential slipping once being established, the very smallest
inclination to the vertical would be sufficient to give the wheel a
sideway slip, which would, of course, rapidly increase with the
vertical inclination of the machine.

171. Influence of S8peed on Side-slipping.—The above dis-

r3

Fi1G. 195.
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cussion on side-slipping presumes that the speed of the machine
and rider is not very great, so that the momentum of moving
parts does not seriously influence the question. If the speed be
very great, however, the momentum of the reciprocating parts,
due principally to the weight of the rider’s legs, pedals, and part
of the weight of the crank, may have a decided influence on side
slipping.

Let G be the mass-centre of the machine and rider (fig. 196),
let the total mass be /¥ 1bs., let the linear speed of the pedals
relative to the frame of the machine be o,
and let w be the mass in lbs. of one of the
two bodies to which the vertical components
of the pedals’ velocity is communicated : zo
will approximately be made up of the pedal,
half the crank, the rider’s shoe, foot, and
leg from the knee downwards, and about
one-third of the leg from the knee to the
hipjoint. If the rider’s ankle-action be
perfect, the mass  may be considerably
less, depending on the actual vertical speeds
communicated to the various portions ot
the leg. Let the centre of the mass w be
distant /, from the central plane of the
bicycle. When the pedal is at the top of its
path this mass possesses no velocity in a
vertical direction, and thcrefore no vertical momentum. When
the crank is horizontal and going downward, the vertical velocity
is at its maximum, and the momentum is 7 ». Let 7 be the time
in seconds taken to perform one revolution of the crank, the time

FiG. 196.

taken to impress this momentum is :; and if /! be the average

force in poundals acting during this time to produce the change,
we must have (sec. 63) :

S ! — o,
Therefore f!= 4_?'_2’.
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- If f be the average force in lbs., f' =g/, and the above
equation may be written,
_ 4wy
f—--‘ét N )
If 7 be the length of the crank, the length of the path de-
scribed in one revolution by the pedal-pin is 2 #/ and the time

taken to perform one revolution is 2'3—1'

Substituting in (10)
we get,

f=2;l:r7}13 e e e e e e (ll)

Now leaving out of consideration for an instant the action
of any force at the point of contact of the machine with the
ground, and considering the machine and rider as forming one
system, the above force f is an internal force, and can thus have
no action on the mass-centre, G, of the whole system. But two
parts of the system have each been impressed with a moment of
momentum, w v/, about the mass-centre G, the remaining part
(W — 2w) will be impressed with a momentum numerically
equal but of opposite sense. Let G, be the mass-centre of this
remaining part. Then the up-and-down motion of the two
pedals being as indicated by the arrows p, and p,, the point G,
must move to the left with a velocity, v, such that

2wol, = (IV—2w)v, x GG,.

Thus, if there be absolutely no friction between the wheel
and the ground, the point of contact of the wheel must slip side-
ways to the right.

Let F be the average frictional resistance, in Ibs., required to
prevent this slipping, then

Fh=2 f l],
or 2
_4wv?l
—‘grrllz e e e e (12)

If n be the number of turns per second made by the crank,

v = 2 v n/, and (12) may be written
_16xn*l\/w
F—gli_""'(ls)
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From (12) and (13) the lateral force #, or what may be called
the ‘tendency’ to side-slip, is proportional to the masses which
partake of the vertical motion of the pedals, to the width of the
tread, and inversely proportional to the height of the mass-centre
from the ground ; from (12) it is proportional to the square of
the speed of the pedals, and inversely proportional to the length
of the crank ; from (13) it is proportional to the square of the
number of revolutions of the crank-axle and to the length of the
crank.

The force F changes in direction twice during one revolution
of the crank-axle. It is equivalent to an equal force acting at
G, and a couple F4  The force acting at G, changing in
direction, will therefore cause the mass-centre of the bicycle and
rider to move in a sinuous path, even though the track of the
wheel be a perfectly straight line. The less this sinuosity, other
things being equal, the better ; 7.e. in this respect a high bicycle
is better than a low one for very high speeds.

It must be carefully noted that in the above investigation the
pressure exerted on the pedal by the rider does not come into
consideration. When moving at a given speed the tendency to
side-slip is therefore quite independent of whether pressure is
being exerted on the pedal or not.

172. Pedal Effort and Side-slip.—The idea that the pressure
on the pedal causes a tendency to side-slip is so general that it
may be worth while to study in detail the forces acting on the
rider, the wheel and pedals, and the frame of the machine. I‘or
simplicity we will consider an ¢ Ordinary,’ in which the rider is
vertically over the crank-axle. The investigation will be of the
same nature, but a little longer, for a rear-driving ¢ Safety.” The
weight of the machine will be neglected.

Let I be the weight of the rider, #, the vertical thrust on
the pedal, #, the upward pull on the handle-bar, Zj the vertical
pressure on the saddle; let /, and /, be the distances of the
lines of action of #, and Z, respectively, and /; the distance of
the crank axle-bearing from the central plane of the machine
(fig. 196).

Consider first the forces acting ~r “he rider ; these are, his

~

weight, 117 acting downwards »~ = - 1 7 of the handle-
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bar downwards ; the reaction, £, from the pedal upwards ; and
the reaction, #;, of the saddle. These forces are all parallel, and
since the rider is in equilibrium we must have

W—-—FR+F,—-F,=0. .. . . (13)

Also, the moments of these forces about any point is zero ; there-
fore, taking moments about the mass-centre, G, if the rider has
not shifted sideways when exerting the pressure #; on the pedals,

FL-Fh=0 . . . . . . (15

If the rider does not pull at the handles he must either grip tightly
on to the saddle, or shift sideways, so that the moment of the force
£, is balanced.

Consider next the forces acting on the frame, which, for clear-
ness of illustration, is shown isolated (fig. 197); these are, the
pull, %, on the handle-bar upwards ; the pressure, /;, of the
rider on his saddle downwards ; and the upward reaction of the
bearings f, and f,. These forces
are all parallel, and since they
are in equilibrium,

h—F+hH+/hr=0;
that is,

h+hfai=F—-F. . (16)

Since the force (F; — F,) has
no horizontal component, neither
will the force (f; + f3). By taking
moments of all the forces about
the point of application of f,,
the value of f; may be found,
and then £, can be determined.
Now, consider the forces acting on the wheel (fig. 198), in-
cluding cranks and pedal-pin, which together form one rigid bods.
Besides the forces F,, f,, and f,, there is only the reaction of the
ground, R, and since the wheel is in equilibrium verticaliy,

R—F —fi—fi=o

Fic. 13,
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Substituting the value of £, + f; from (16) we get
R=F|—F’+Fa=”," . . . . (17)

R being vertical, there is no tendency to side-slip.

The above result can be more simply obtained, thus : con-
sidering the bicycle and rider as forming one system of bodies,
the external forces acting are in equilibrium; and since these
consist only of the weight, /#, and the reaction, £, R must be
(sec. 71) equal, parallel but opposite to /. W being vertical,
R must also be vertical. The force #, exerted by the rider on
the pedal is an internal force, and has not the slightest influence
on the external forces acting on the system.

173. Headers.—Taking a ‘header’ over the handle-bar was
quite an every-day occurrence with riders of the ‘Ordinary’ bicycle.
In the ¢Ordinary,’ the mass-centre of the rider and machine was
situated a very short distance behind a vertical through the centre
of the front wheel, so that the margin of stability in a forward
direction was very small ; any sudden check to the progress of
the machine by an obstruction on the road, by the rider applying
the brake, or back-pedalling, was in many cases sufficient to send
him over the handle-bar. Two classes of headers have to be dis-
tinguished : (I) That in which the front wheel may be considered
rigidly fixed to the frame ; the header being caused either by the
application of the brake to
the front wheel, or by back-
pedalling in a Front-driver.
(IT) That in which the
front wheel is quite free to
revolve in its bearings ; the
header being caused by an'
obstruction on the road,
application of the brake to
the back wheel, or back-
pedalling in a Rear-driver.

(I) Let /, (fig. 199) be
the distance of the mass-
centre, G, from a vertical through the wheel centre, ¢ ; then, in
order that the wheel, frame, and rider may turn as one body about

F1G. 199.

Y
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the point a as centre, a moment, # /,, must be applied. If 4 be
the diameter of the driving-wheel, i the coefficient of friction of
the brake, and P the pressure of the brake just necessary to lock
the frame on the wheel and so cause a header,
M Pa
T2
If the pressure actually applied to the brake be equal to or
greater than A, determined by the above equation, the wheel will
be locked to the frame.
Let the circle through G with centre a cut the vertical through
¢ at £ From G draw a horizontal to cut ¢ %2 in £ In taking a
header, the weight of the machine and rider has to be lifted a

distance f 4. If v be the speed of the machine, the kinetic energy
W
stored up in it is ) : , and the work done in lifting it through

the height /% is W x fk; therefore, if the speed v be greater
than that determined by the formula

a header will occur if the brake-pressure be applied strongly.

If the check to the speed of a Front-driver be made by back-
pedalling, » be the radius of the crank, and 7, the back-pedalling
force applied, we have,

=Wh . . .. ... (18

Pr=wWIi. . . . . . . (20

The action of back-pedalling in a Front-driver is the same as
that of applying the brake to the front wheel, as regards the lock-
ing of the front wheel to the frame. The speed at which a header
will occur if vigorous back-pedalling be applied is in this case also
given by equation (19).

Example I.—In a 54-inch ‘Ordinary,’ the point G (fig. 199) may
be 60 inches above the ground and 1o inches behind the wheel-
centre c. The height, /4, will then be about 1°2 inch = ,}, foot.
Substituting in (19)

2
2~:{ 323 = ‘10’ from which v = 2°5 feet per second,
= 1°9 mile per hour.
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Example II.—In a *Safety’ (fig. 200) the height, f %, may be
2 feet. Substituting in (19),
2
v_. = 2, from which # = 11°1 feet per second,
2 X 322

= 7°6 miles per hour.

The subject may be looked at from another point of view.
Let 7, be the horizontal force of retardation which must be
supplied by the action of
the ground on the wheel.
This is transmitted
through the wheel,
so that an equal force,
F,, acts on the mass at
G, and the mass reacts
on the frame with an
equal and oppositeforce,
Fy. Then, in order that
stability may be main-
tained, the resultant &
of IV and F; must not cut the ground in advance of the point of
contact a. If R cuts the ground in front of a, the machine
will evidently roll over about a as centre.

(II) Brake on Back Wheel—If the brake be applied to the
rear, instead of the front wheel, the bicycle is much safer as re-
gards headers. If the brake, in this case, be applied too suddenly,
the retarding force causes an incipient header, the frame turning
about the front wheel centre ¢ as axis, and the rear wheel im-
mediately rises slightly from the ground. The retarding force
being thus removed, the development of the header is arrested,
the rear wheel again falls to the ground, and the process is re-
peated, a kind of equilibrium being established.

Headers through Obstructions on the Road.—If the check to
the progress of the machine be caused by an obstruction on the
road, the only difference from the case treated above is that the
front wheel is free to revolve in its bearings ; the header is taken
about the point ¢ as a centre, and the resultant & of the weight
11" and the force 4 must not pass in front of the wheel centre .

Fi1G. 200.
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The direction of the forces between two bodies in contact is
(neglecting friction) at right angles to the surface of contact. In
a bicycle wheel with no friction at the hub, the direction of the
pressure exerted by a stone at the rim must therefore pass through
the wheel centre. This condition enables us to determine the
size of the largest stone which can be ridden over at high speed
without causing a header. Join the mass-centre, G, to the front
wheel centre, ¢ (fig. 201), and produce the line to cut the circum-

Fic. 2o1.

ference of the wheel at 4. A stone touching the rim at a point
higher than 4 may cause a header at high speed ; a stone touch-
ing at a lower point may be ridden over at any speed. Figure
200 is the same diagram for a ¢ Safety’ bicycle, a glance at which
shows that with this machine a much larger stone can be safely
surmounted than with an ¢ Ordinary.’

The above discussion presupposes that at the instant the
front wheel strikes the stone no driving force is being exerted.
If the rider is driving the front wheel forward at the instant, a
larger obstacle may be safely surmounted. Let ¢ (fig. 201) be the
point of contact of a large stone ; the reaction &, is in the direc-
tion ¢ ¢. The resultant force R on the mass at G must be equal
and parallel but opposite to &,. The forces £ and R, form a
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couple R /, tending to turn the frame and rider about the centre
¢, / being the length of the perpendicular from G on ¢ ¢ pro-
duced. If the rider apply to the front wheel a turning moment
in the forward direction equal to or greater than R / there will be
a couple of equal magnitude acting on the frame tending to turn
it in the opposite direction, which will neutralise the couple & /Z
The final result is that the wheel safely surmounts the obstacle,
turning about ¢ as centre.
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CHAPTER XVIII

STEERING OF CYCLES

174. Steering in General. —When a bicycle moves in a
straight line, the axes of its wheels are parallel to each other. The
steering is effected by changing the direction of one of the wheel
spindles relatively to the other. In order to effect this change of
direction, the frame carrying the wheels is made in two parts,
jointed to each other at the steering-head, the parts being called
respectively the rear- and front-frames. One of these parts, that
carrying the saddle, is usually much larger than the other (and is
often called the frame, to the exclusion of the other part called
the fork) ; the wheel —or wheels—mounted on the other (smaller)
part of the frame is called the steering-wheel—or wheels.
According to this definition, the driving-wheel of an ‘ Ordinary’ is
also the steering-wheel. In side-steering tricycles (see chap. xvi.)
the frame is in three parts, and there are two steering-heads.

Cycles are front- or rear-steerers, according as the steering-
wheel is mounted on the front- or rear-frame. All bicycles that
have attained to any degree of public favour are front-steerers :
The ¢ Ordinary,’ the ¢ Kangaroo,’ the ¢ Rover Safety,’ the ¢ American
Star,’and the ¢ Geared Ordinary.” A few successful tricycles have,
however, been rear-steerers.

175. Bicycle Steering.—Let a (fig. 202) be the wheel fixed to
the rear-frame, 4 the steering-wheel, and & the intersection of the
steering-axis with the ground ; this, in most cases, is at or near
the point of contact of the wheel with the ground, though in the
‘Rover Safety,” with straight front forks, it occurs some little
distance in front. Let the plan of the axes of the wheels a and 4
be produced to meet at o, then if the wheels roll, without slipping
sideways, on the ground, the bicycle must move in a circle having
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o as its centre. The steering-wheel, 4, will describe an arc of
larger radius than that described by the wheel a ; consequently
if in making a sharp turn to avoid an obstacle the front wheel
clears, the rear wheel will alsoclear. In a rear-steering bicycle, on
the other hand, it may
happen that the rear
wheel may foul an object
which has been cleared

by the front wheel.
~ The actual sequence
~~ of operations in steering
~. a bicycle is not com-
~..# monly understood. Ifa
beginner turn the steer-
ing-wheel to one side
‘. FiG. 200, before his body and the
bicycle have attained the
necessary inclination, the balance will be lost. On the other hand,
the beginner is often told to lean sideways in the direction he wants
to steer. This operation cannot, however, be directly performed ;
since, if he lean his body to the right, the bicycle will lean to the
left, and the sideway motion of the mass-centre cannot be con-
trolled in this way. It has been shown (sec. 162) that the path
described by a bicycle, even when being ridden as straight as
possible, is made up of a series of curves, the bicycle being
inclined alternately to the right and to the left. If at the instant
of resolving to steer suddenly to one side the bicyclist be inclined
to that side, he simply delays turning the steering-wheel until his
inclination has become comparatively large. The radius of curva-
ture of the path corresponding to the large inclination being small,
the steering-wheel can then be turned, and the bicycle will
describe a curve of short radius. If, on the other hand, he be
inclined to the opposite side, the steering-wheel is at first turned
in the direction opposite to that in which he wishes to steer, so as
to bring the bicycle vertical, and then change its inclination ;
the further sequence of operations is the same as in the former
case. Thus, to avoid an object it is often necessary to steer for a
small fraction of a second towards it, then steer away from it ; this

—
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1s probably the most difficult operation the beginner has to master.
In steering, the rider’s body should remain quite rigid in relation
to the frame of the bicycle.

176. Bteering of Tricycles.—The arrangement of the steering
gear of a tricycle should be such that in rounding a corner the
axes of the three wheels all intersect at the same point. In the
¢ Humber,’ the ¢ Cripper,’ and any tricycle with a pair of wheels
mounted on one axle this condition is satisfied.

Let O be the intersection of the axes, q, b, ¢, of the three
wheels. The tricycle as a whole rotating round O as a centre, the

Fi.. 203.

linear speed of the rim of wheel ¢ will be greater than that of
wheel 4 nearer the centre of rotation. If 4 and ¢ are not driving-
wheels, and are mounted independently on the axle, they will run
automatically at the proper speeds. If 4 and ¢ are driving-wheels,
as in the ‘ Humber,” ‘ Cripper,” and ‘Invincible’ tricycles, some
provision must be made to allow the whecl on the outside of the
curve to travel faster than the inner.  This is described in sections
188, 189.

177. Weight on Steering-wheel.  -We have already seen that
a considerable portion of the total weight of the machine must be
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placed on the driving-wheel, so as to prevent skidding under the
action of the driving effort. A certain amount of weight must
also rest on the steering-wheel in order that it may perform its
functions properly.

If the machine be moving at a high speed in a curve
of short radius, the motion of the frame and rider can be ex-
presséd either as one of rotation about the point O, or as a
translation equal to that of the mass-centre of the machine and
rider, combined with a rotation about a vertical axis through
the masscentre G. If the rider should want to change from a
straight to a curved course, the linear motion of the machine
remains the same, but a rotation about an axis through the mass-
centre must be impressed on it. To produce this a couple must
act on the machine. The external forces, 2, and 2, constituting
this couple can evidently only act at the points of contact of the
wheel and the ground, and, presuming that the rolling friction may
be neglected, can only be at right angles to the direction of
rolling. The magnitudes of the forces 2, and 2P, depend on the
speed at which the cycle is running, and also on the general
distribution of weight of the machine and rider—in mathematical
language, on the moment of inertia of the system. The weight,
w, on the steering-wheel must be equal to, or greater than,

{-)-', u being the coefficient of friction. The moment of inertia,
n

about its mass-centre, of a system consisting of a machine and
two riders is very much greater than twice that of a system con-
sisting of a machine and one rider ; consequently the pressure
required on the steering-wheels of tandems is much greater than
twice that required on the steering-wheel of a single machine.

A simple analogy may help towards a better understanding of
this. Suppose two persons of equal weight be seated at opposite
ends of a sce-saw, and that the up-and-down motion is imparted
by a person standing on the ground, and applying force at one
end of the sce-saw. If now only onc person be left on the see-
saw, and he be placed at the middle exactly over the support, the
person standing on the ground will have to supply a much smaller
force than in the former case to produce swings of equal speed and
amplitude. The swinging up and down of the see-saw corresponds
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to the change of steering of the“cycle from left to right, the forces
applied by the person standing on the ground to the forces, 2,
and 2, of reaction of the ground on the wheels. The single
person on the middle of the see-saw corresponds to a single rider
on a cycle, the two persons at the ends to the riders on a tandem.
Sensitiveness of Steering. —We have continually spoken of the
point of contact of a wheel with the ground, thereby meaning the
geometrical point of contact of a circle of diameter equal to that
of the wheel. The actual contact of a wheel with the ground
takes place over a considerable
surface, the lower portion of the
tyre getting flattened out as
shown, somewhat exaggerated in
_ figure 204. The total pressure of
the wheel on the ground is dis-
tributed over this area of contact. Considering tyres of the same
thickness, it is evident that a wheel of large diameter will have
the length of its surfacc of contact in the direction of the plane
of the wheel greater than that of a wheel of smaller diameter.
Consider now the resistance to turning such a wheel, pivot-
like, on the ground, as must be done in steering. Let A4 be the
area of the surface of contact, and suppose the pressure of
intensity, g, distributed uniformly over it, as will be very approxi-
mately the case with pneumatic tyres ; then
r="r

FiG. 204.

Consider a small portion of the area of width, 7, included between
two concentric circular arcs of mean radius, . Let a be the area
of this piece, the total pressure on this will be p a, and the
frictional resistance to spinning motion of this portion of the tyre
on the ground will be upa. The moment of this force about the
geometrical centre, O, is

ppar .« . . . .« . (1)

and the total moment of resistance of the wheel to spinning on the

ground is the sum of all such clements. If we consider the

surface of contact to be a narrow rectangle, whose width is very
Q
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small in comparison with its lengtil, /, the average value of » in (1)

will be ZI, and the total moment of resistance to spinning will be

wi
34-.........(2)

Thus a greater pull will be required at the handle-bar to steer a
large wheel than a small one; in other words, a small steering-
wheel is more sensitive than a large one. The assumption made
above, that the width of the surface of contact is very small com-
pared with its length, is not even approximately true for pneumatic
tyres. The moment of resistance in this case will, however,
increase with /, and, therefore, the conclusion as to the relative
sensitiveness of small and large wheels holds.

The above expression gives the moment of resistance to turning
the steering-wheel on the ground when the bicycle is at rest. This
moment is quite considerable, and is much greater than the actual
moment required to steer when the bicycle is in motion, as can be
easily verified by experiment. The explanation of this phenome-
non is practically of the same nature as the explanation, given in
section 170, of the small force necessary to overcome friction in
one direction, provided motion in a direction at right angles exists.
In the present case the wheel is rotating about a horizontal axis
during its forward motion ; the steering is effected by giving it a
motion about a vertical axis. On account of the motion about a
horizontal axis already existing, a comparatively small moment is
sufficient to overcome the frictional resistance to motion about a
vertical axis.

178. Motion of Cycle Wheel.—It is a popular notion that the
motion of a vehicle wheel is one of pure rolling on the ground,
but a little consideration will show that this is not always the case.
So long as a tricycle moves in a straight line, the wheels merely
roll on the ground, the instantaneous axis of rotation being a line-
through the point of contact of the wheel and ground, parallel to
the axis. When the vehicle is moving in a curve, in addition to
this rotation about a horizontal axis, the wheel possesses a motion
round a vertical axis, and some parts of the tyre in contact with the
ground slide over the ground, as described in section 177. The
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instantaneous axis of- rotation is now a line inclined to the
ground.

Suppose that the plane of the wheel can be inclined to the
vertical when the cycle is moving in a curve, as in the case of a
bicycle or steering-wheel of a ¢ Cripper’ tricycle. Let the axis of
the wheel be produced to cut the ground at 7, then if the cycle
be at the instant turning about the point ¥~ as centre, the motion
of the wheel on the ground will be one of pure rolling, no sliding
being experienced by any point of the tyre in contact with the
ground. The part of the wheel in contact with the ground may
be considered part of a right circular cone, having its vertex at V.
Such a cone would roll without slipping on a plane surface, the
vertex, V, of the cone remaining always in the same position.

The intersection of the axis of the wheel with the ground is
determined by the inclination of the wheel to the vertical. This
inclination depends on the radius of the curve in which the
bicycle is moving, and also its speed. For a curve of a given
radius there is, therefore, one particular speed at which V will
coincide with O, the centre of turning of the bicycle. At this
speed there will be no spinning
of the tyre on the ground,
while at greater or less speeds
spinning occurs to a greater
or less degree.

179. Steering Without
Hands.—In a front-driving
bicycle, the saddle and crank-
axle being carried by the rear-
and front-frames respectively,
there is theoretically no diffi-
culty in steering without using
the handle-bar. If it be de-
sired to turn towards the right,
a horizontal thrust at the left
pedal as it passes its top
position, or a pull at the right pedal as it passes its lowest position,
will cffect the desired motion.

In a rear-driving bicycle, the saddle and crank-axle being

Q2

FiG. 208,
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carried by the rear-frame, there is no direct connection between
the rider and the steering-wheel axle except by the handle-bar.
Let a, be the angle the steering-axis makes with the horizontal
when the bicycle is vertical (fig. 205) ; 2 the distance of the
wheel centre from the steering-axis ; £, the distance between &, the
point of contact of the wheel with the ground, and & the point of
intersecticn of the steering-axis with the ground, when the bicycle
is vertical and the stcering-wheel in its middle position ; £ the

FiG. 2c6.

distance of the mass-centre of the steering-wheel and front-frame
(including handle-bar, &c.) from the stecring-axis ; 6 the inclina-
tion of the middle plane of the rear-frame to the vertical ; ¢ the
‘angle the handle-bar is moved from its middle position, 7.e. the
angle between the middle planes of the front and rear wheels ;
and a the angle the steering-axis makes with the horizontal, cor-
responding to the values of 0 and ¢. ligs. 200 and 207 are
clevation and plan of a bicycle hecling over. The forces acting
on the front whecel and frame which may tend to turn it about the
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steering-axis are—the reaction of the ground, and the weight, z¢, of
the front wheel and frame. The reactions at the ball-head inter-
scct the steering-axis, and therefore cause no tendency to turn.
The reaction of the ground can be resolved into three com-
ponents— I}/, acting vertically upwards ; #, the resistance in the
direction of motion of the wheel ; and C, the centripetal force at
right angles to /1 The line of action of /' passes very near the
steering-axis for all values of # and ¢, and since F is itself small
in comparison with [/ and C,
its moment may be neglected.
Figs. 208 and 209 are elevation
and plan enlarged from figs. 206
and 207, showing the relation of IV
to the steering-axis. & d, is the
plan and 4! 4! the clevation of
the shortest line between J#7 and
the steering-axis. I/ can be re-
solved into a force, .S, parallel to
the steering-axis, and a force, 7, at
right angles to the planc containing
Sand the steering-axis. If 6,1 6}
represent [#7 to scale, ¢' 4,' and
2' 0, are the elevations of the forces
7 and S, while Q 4,' and 4, Q
show to scale the true magnitudes
of T and .S respectively ; re. 6, by
¢' is the elevation of the force-
triangle, and 4,' 4,' Q is its true
shape.  Also it may be noticed
that the line 4 4, in plan measures
the true length of the perpendicular between 7V and the steering-
axis ; and /¥ tends to turn the steering-wheel still further, its
moment about the steering-axis being () 4,! x 4 &,. The centri-
petal force € tends to turn the steering-wheel back into its middle
position. The effect of the weight 7 in tending to turn the steering-
wheel can be shown in exactly the same way as that of the vertical
reaction 1. ‘The tendency is in general to increase the devia-
tion of the steering-wheel, but when a straight fork is used the

FiG. 208.
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tendency is to reduce it, on account of the mass-centre of the
handles being behind the steering-axis.

We shall now determine the analytical expressions for the
moments of /¥, C, and w, assuming that the angles 6 and ¢ are
small, and that, therefore, we may use the approximations

sin0=0="tan0
sinp=¢="lan ¢.

We have seen above that the moment of 17 is

Qb xbdy
Now Qb = IV cos a,
also sin a = sin ay cos 0.
Therefore Qb= 1 —sin?ayos?

= IV cos ay approximately.

Now 6 d, =bdsinbdd. Theangle bdd is made up of
the two angles @ 2 4 and @ d 4,. The former is zero if ¢ is zero,
and the latter is zero if 0 is zero. For small values of 0 and ¢,
theanglea d b= ¢ sinag,and a d d, = 0 tan a,.

Therefore bdy=bd sin (3 tan ag + ¢ sin ay).

'_I‘hercfore_. if we assume that 4 4 remains constant, we have
bd, =% (8 tan ay + ¢ sin a,) approximately, and moment of I¥is

Whksinay(0+¢cosag). . . . . . (3)

The moment of C for small values of 0 and ¢ will be approxi-
mately C x & d X sin a,.
Now, if the angle ¢ remains constant

_we 5, _ I ! .
C= R’ R= sinadb = ¢ sin approximately,
v being the speed of the bicycle, R the radius of the circle
described by the front wheel, and / the length of the wheel-base.

Therefore the moment of C is
Wt k¢ sin?ag
o/ P )
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The moment of 7 can be found as follows : Resolving
into two components parallel to and at right angles to the steer-
ing-axis, the latter is w2 cos a. Figure 210 shows side and end
elevations of the steering-axis and mass-centre, G. The perpen-
dicular distance B, B, between w and the steering-axis for a
small value of 0 is

CBQX 0= f'o—"

cos ay

while for a small value of ¢ it is £ ¢. Therefore moment of w is

w cos ao(fz; +f¢)

cos
=20f(0+¢¢‘05a0) . ¢ o 0 . (5)

Hence, finally adding (3), (4), and (5), the moment tending to
turn the steering-wheel still further from its middle position is
IV k sin ay (3 + ¢ cos ap) — -;Zki;’;ma-@ +w f(0+ ¢ cosap)
Whkosintay
gl v? . (6)

To maintain equilibrium the expression (6) should have the
value zero, to steer further to one side or other it should have
a small positive value, and to steer
straighter a small negative value.

For given values of v and ¢ there
remains an element 6, the inclination
of the rear-frame, at the command of
the rider ; but even with a skilled rider
the above moment varies probably so
quickly that he could not adjust the
inclination 0 quickly enough to pre-
serve equilibrium.

In the above expressions we have
taken no account of the gyroscopic action of the wheel, though
probably this is the most important factor in the problem
Taking account of the gyroscopic action, the above moment
about the steering-axis would produce a motion of precession
about an axis at right angles to those of the ball-head and

=(Wksinag+ w f) (0 + ¢ cos ap) —

Fic. 210,



232 Cycles in General CHAP. XVIIL

steering-wheel ; while to turn the steering-wheel about the steer-
ing-axis, a couple, with its axis at right angles to the steering-axis,
would be required. This is produced by the side pressures on
the steering tube ; so that in steering without hands, if the rider
wishes to turn to the right, he merely leans over slightly to the
right, and the steering-wheel receives the required motion, pro
vided the value of the expression (6) is small.

Example.—With the same data as in section 168, to turn the
steering-wheel at the speed indicated, a couple of 2°42 foot-lbs.
is required, z.e. if the ball-hcad be 8 inches long, side pressures of
3'63 lbs. would suffice to turn the front wheel at the speed
indicated. To turn the steering-wheel more quickly, a greater side
pressure must be exerted on the steering-hcad.

From section 168 the gyroscopic couple required is proportional
to the square of the speed, and approximately proportional to the
weight and to the diameter of the front wheel ; therefore, stecring
without hands should be casier the higher the speed, the larger
the steering-wheel, and the hcavier the rim of the steering-wheel.
This agrees with the fact that a fair speed is necessary to perform
the feat, that the fcat is easier with pneumatic than with solid
tyres, the former with rim being heavier than the latter ; it also
accounts for the easy steering with large front wheels, and for the
fact that the ‘Bantam’is more difficult to steer without hands
than the ¢Ordinary.’

It may be noticed that if this explanation be correct, it should
be possible to ride without hands a bicycle in which the steering-
axis cuts the ground at the point of contact of the front wheel.
M. Bourlet, who discusses the subject at considerable length, says
this js impossible ; he also says that the mass-centre of the front
wheel and frame must lie in front of the stecring-axis ; but this
would mean that a bicycle with straight forks could not be ridden
without hands ; whereas some of the earliest ‘Safety’ bicycles,
made with straight forks, were easily ridden without hands.

180. Tendency of an Obstacle on the Road to Cause Swerv-
ing.—If a bicycle run over a stone, the force cxerted by the stone
on the steering-wheel acts in a direction intersccting the steering-
axis, and has thus no tendency to cause the steering-wheel to turn
in either direction. In the same way, the stcering-wheel of a
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¢Cripper’ or ‘ Invincible’ tricycle in running over a stone experiences
no tendency to turn, and therefore no resistance need be applied
by the rider at the handle-bar. The line of action of the force
exerted on the machine cuts a vertical line through the mass-
centre ; the force therefore only tends to reduce the speed of the
machine, but not to deviate it from its path. If the obstacle mcet
one of the side wheels of a tricycle, the force exerted by the stone
and the force of inertia of the rider form a couple tending to turn
the machine and rider as a whole about their common mass-
centre. In some tricycles the force exerted by the stone tends
also to change the position of the steering gear, and so cause
sudden swerving. A few of the chief types of tricycles are dis-
cussed in detail, with refercnce to these points, in the following
sections.

181. Cripper Tricycle—Iet one of the driving-wheels meet
with an obstacle. Introducing at ¢, the mass-centre, two opposite
forces, F, and /7, each equal to /#, no change is made in the
static condition of the system. The force, £, (fig. 203), exefted by
the stone on the machine is equivalent to an equal force, £,
acting at the mass-centre of the machine and rider, and retarding
the motion, and a couple formed by the forces #, and Z; tending
to turn the machine about its mass-centre, . This turning is
prevented by the side friction of the wheels on the ground. To
actually turn about G, the driving-whcels must roll a little and the
front stecring-wheel slip sideways.

Let f be the resistance to slipping sideways of the front wheel,
/, and /, the lengths of the perpendiculars from G on the lines of
action of the forces F, and f, w the lcad on the steering-wheel,
and p the coefficient of friction between the steering-wheel and
the ground. Then f/, must be equal to or greater than 7, /,.

Also f = p w, thercfore pw/, Z F/, or
> Il
- (7)

W= ,° ¢ o« o o o o o =
A

If, in the ¢ Cripper’ tricycle, the steering-axis produced passes
exactly through the point of contact of the steering-wheel with the
ground (fig. 211), the reaction from the ground on the steering-
wheel has no tendency to cause it to turn ; no resistance is necessary
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at the handle-bar when one of the driving-wheels strikes an
obstacle. If] as in all modern tricycles, the steering-axis produced
passes in front of the point of contact of the steering-wheel with
the ground (fig. 212), the force, £ will tend to turn the steering-
wheel sideways, and must be resisted by a force, £}, at the handle-
bar, such that %, /, = f/,, /5 being the length of the perpendicular

da

FiG. 211, FiG. 212

from the point of contact with the ground to the steering-axis, and
/, the half-length of the handle-bar.

In a tricycle with a straight fork, the distance /;, and therefore
also the necessary force Z,, at the handle-bar to prevent swerving,
is greater than with a curved fork (fig. 212).

182. Royal Crescent Tricycle.—In the ¢ Royal Crescent ’ tri-
cycle (fig. 151), made by Messrs. Rudge & Co., the steering-axis
intersected the ground at a point 4 (fig. 213), some distance behind
the point of contact of the wheel. The force, /, would therefore
tend to turn the steering-wheel about the steering-axis, in the oppo-
site direction to thatin the ¢Cripper.” The distance, /;, being much
greater than in the ¢ Cripper,’ the force, /,, necessary at the handle-
bar to prevent swerving was also greater. A spring control was
used for the stecring, so that a considerable force was necessary to
move the steering-wheel from its middle position.

183. Humber Tricycle.—In a ‘Humber’ tricycle, an obstacle in
front of onc of the driving-wheels tends to turn the driving-axle
round the stcering-axis, a (fig. 214). This must be resisted by a
force, /), applied by the rider at the handle-bar given by the
equation /| /, = ZF, /,, or the obstacle will change the direction of
motion suddenly and a spill may occur. If the rider supply the
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nccessary force, #,, the conditions as to the machine as a whole
turning about the mass-centre G, and as to the weight necessary
on the steering-wheel to prevent this turn-
ing, are the same as discussed in section
181.

It will be seen from the above that
the arrangement of the steering in the
‘Humber’ tricycle is less satisfactory than
in some of the other types.

Any cycle in which there are a pair of
independent wheels mounted on a com-
mon axle, pivoted to the frame at its
middle point, will be subject to the same
defect of steering. Examples are afforded
in figures 154, 153, and 182.

184. Olympia Tricycle and Rudge
Quadricycle. — The wheel plan of an
*Olympia’ tricycle is shown at figure 215. A single rear driving-
wheel is used ; the two front wheels are side-steerers. In some
of the earlier patterns of this tricycle made by Marriott &

doe

Fic. 214.

FiG. ars.

Cooper, the steering-wheels ran free on the same axle, which
was pivoted at a to the rear-frame of the machine ; the action in
steering was thercfore the same as in the ‘Humber’ tricycle. In
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the modern patterns of the * Olympia’ tricycle the steering is effected
by providing the steering-wheel spindles with separate steering-
heads at @, and a,. Short bell-cranks are formed on the spindles,
and the ends of these cranks are connccted by links to the end of
a crank at the bottoin of the steering-post a. The distance, /,,
between the steering-axis and the point of contact of the steering-
wheel with the ground being much less than in the ¢ Humber’
tricycle, the influence of an obstacle in causing swerving is corre-
spondingly less, though in this respect the ‘Olympia’ is inferior to
the ‘Cripper.’ ‘The arrangement of this gear should be such that
the axes of the steering-wheels in any position intersect at a point,
O, situated somewhere on the axis of the driving-wheel. This
cannot possibly be effected by any arrangement of linkwork, but
the approximation to exactness may be practically all that can be
desired for road riding. The gear should be arranged so that the
bell-crank of the outer steering-wheel swings through a less angle
from its middle position than that of the inner wheel.

If the axes of the wheels @, and a, intersect the axis of the
driving-wheel at O, and O, (fig. 215), the machine as a whole may
be supposed to turn about a point, O, somewhere between O, and
O,. Let ¢ be the point of contact of wheel @, with the ground
when the tricycle is moving round centre O, and let the linear velo-
city of a point on the frame vertically above ¢ be represented by ¢ 2,
drawn perpendicular to Oc. From ¢ draw ce perpendicular, and
from & draw d ¢ parallel, to the axis O, ¢ ; these two lines inter-
secting at ¢, the actual velocity ¢4 is compounded of a velocity of
rolling ¢ e of the wheel on the ground, and a velocity of side-slip,
ed. 'The existence of this side-slip in running round curves neces-
sitates careful arrangement of the steering mechanism, so that the
centres O, and O, may never be widely separate.  This side-slip
must also add appreciably to the effort required to propel the
‘Olympia’ tricycle in a curved path, such asaracing track ; and for
such a purpose might possibly appreciably handicap it as com-
pared with a ‘Cripper.’

The steering gear of the ‘ Rudge’ quadricycle is the same as
that of the ¢ Olympia’ tricycle.

185. Rudge Coventry Rotary.—In the ‘Rudge Coventry
Rotary’ two-track tricycle, with single driving-wheel and two
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steering-wheels (fig. 216), the reaction from the ground in driving

being at #, there was continually a couple, #/}, in action tending

to turn the machine, and which was resisted by the reactions, f,

and f,, of the ground on the sides of

the two side wheels. Ior equilibrium,
FlL=f1,

The steering-wheels were pivoted
about axes passing through their points
of contact with the ground and con-
nected by short levers, connecting-rods,
and a toothed-rack, to a toothed-wheel
controlled by the rider. The arrange-
ment, in this case, should again be such
that in any position of the steering-gear
the three axes intersect at a point O ;
the machine would then turn about O —
as a centre. vz

If either of the steering-wheels pass
over an obstacle, it is cvident that
since the direction of the force acting on the wheel intersects
the steering-axis there will be no tendency to turn the wheel,
and therefore no resistance need be offered at the handle by the
rider. The tendency of an obstacle to turn the machine as a
whole about the mass-centre, G, is discussed in exactly the same
way as for the * Cripper’ tricycle.

186. Otto Dicycle..—In the ¢ Otto’ dicycle, the steering was
effected by connecting each of the driving-wheels, by means of a
smooth pulley and stcel band, to the crank-axle. To run round
a corner, the tension on one of the bands was reduced by the
motion of the stecring-handle, the band slipped on its pulley, and
the other wheel being driven at a faster rate, the machine de-
scribed the curve required.  In a newer pattern with central gear
(fig. 172) the motion was transmitted by a chain from the crank-
axle to the common axle of the two wheels. The wheel-axle was
divided into two portions, a diffcrential gear being used, as ex-
plained in section 189. In steering, onc of the driving-wheels
was partially braked by a lcather-lined metal strap, thereby making
it more difficult to run than the other wheel ; one wheel was

-

~

Fic. 216,
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thus driven faster than the other, and the machine described a
curve.

If an obstacle met one of the wheels, its tendency was to
retard the machine and to make it turn about its mass-centre. In
performing this motion of rotation, neither of the wheels slipped
sideways, and therefore no resistance was offered to the swerving ;
consequently some other provision had to be made to prevent this
motion. This was accomplished by locking the gear when
running straight, so that the two driving-wheels were, for the time
being, rigidly fixed to the axle, and ran at the same speed. If the
horizontal force, /, actually caused the machine to swerve, one or
other of the wheels actually slid on the ground. The frictional

resistance to this sliding was * Zf, IV being the weight of the

machine and rider. If # was less than this, and the mechanism
acted properly, the machine moved straight ahead over the
obstacle.

187. Single and Double-driving Tricycles.—A tricycle, in
which only one of the three wheels is driven, is said to be sing/e-
driving. The ¢Rudge’ two-track and the ¢ Olympia’ are familiar
examples. In single-driving tricycles the two idle wheels are
supported independently, so that the three wheels have perfect
freedom to rotate at different spceds.

If the two driving-wheels of a double-driving tricycle are (as
is almost invariably the case) of the same diameter, while driving
in a straight line they rotate at the same speed. They could,
therefore, be rigidly fixed on the same axle, if only required to
run straight ; but in running round a curve the outer wheel must
rotate faster than the inner, unless onc or other of the wheels
skid, as well as roll, on the ground. Some arrangement of me-
chanism must be used to render possible the driving of the two
wheels at different speeds.

188. Clutch Gear for Tricycle Axles.—Besides the ¢Otto’
double-driving gear above described, two others, the clutch gear
and the differential (or balance) gear, have been used to a consi-
derable extent, though at present the differential gear is the only
one used. In the ¢ Cheylesmore’ clutch gear (fig. 217), made by
the Coventry Machinists Co., Limited, a sprocket wheel, z¢, in the
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form of a shallow box, was mounted loosely near each end of the
pedal crank-axle, and was connected by a chain to the corre-
sponding driving-wheel. A cam, ¢, was fixed near each end of the
crank-axle, and between the cam and the inner surface of the
wheel, w, four balls, 4, were placed ; the four spaces between the
cam and the rim of the toothed-wheel being narrower at one end,
and wider at the other, than the ball. In driving the axle in the
direction of the arrow,

the balls, 5, were

jammed between the °

wheel and the cam, the

wheel  consequently

turned with the axle. @ )]

If the axle were turned

in the opposite direc-
tion, or if the wheel
tended to move faster
than the axle in the
direction of the arrow,
the balls, 4, were liberated, and the cog-wheel revolved quite in-
dependently of the axle. While moving in a straight line both
driving-wheels were driven ; but when running in a curve the inner
wheel was driven by the clutch, while the outer wheel running
faster than the inner overran the axle and liberated the balls, the
outer wheel being thus left quite free to revolve at the required
speed.

189. Differential Gear for Tricycle Axle.—Let two co-axial
shafts, m and # (fig. 218), be geared to a shaft, £, the axis of which
intersects that of the shafts, » and », at right angles. The gearing
may consist of three bevel wheels, a, 4, and ¢, fixed respectively
to shafts, m, &4 and n. The threc shafts are carried by bearings,
m,, b, and n, respectively. Let the shaft, 4, be rotated in its
bearings, it will communicate equal but opposite rotations to the
shafts m and n. If o, be the angular speed of the shaft m, that
of n will be —w,, and the relative angular spced of the shafts m
and 7 will be 2 o,.

Now, lct the shaft, £, carrying with it its bearings, £,, be rotated
about the axis, m n, with an angular spced, w ; the teeth of the

FiG. 217,



240 Cycles in General CHAP. XVIIL

wheel, 4, engaging with those of @ and ¢, will cause the shafts, m
and », to rotate with the same speed, o, about their common
axis ; the shaft, 4, being at rest relative to its bearings, #,. If
driving-whecls be mounted at the ends of the shafts, m and »,
they will both be driven with the same angular speed o about the
axis m n.

Let now the shaft, £, be rotated in its bearings, giving a rotation
o, to the shaft », and a rotation —w, to the shaft #, while 4 and
its bearings are being simultancously rotated about the axis m

a2
3.

Fia. z13

with the angular speed, w.  The resultant speed of the shaft m
will be (o+w), that of the shaft » will be (v—w;). Thus,
finally, the average angular speed of the shafts m and 2 is the
same as that of the bearings, £, while the difference of their
angular speeds is quite independent of the angular speed of 4,. In
Starley’s differential tricycle gear, or balance gear, a chain-wheel is
formed on the same picee of metal as the bearings, £, and is
driven by a chain from the crank-axle.  The driving cffort of the
rider is thus transmitted to the driving-wheels at the end of the
shafts m and ». The shafts have still perfect freedom to rotate
rclatively to cach other, and thus if in steering one wheel tends
to go faster or slower than the other, there is nothing in the
mechanism to prevent it

In figurc 218, the bevel-wheels, a and ¢, in gear with the wheel 4
are shown of cqualsize.  InStarley’s gear (fig. 219) a second wheel
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near the other end of the spindle, 4, gears with those on the ends of
the two half axles, so that the driving effort is transmitted at two
points to each of these wheels. This forms, perhaps, the neatest
possible gear, but a great varicty could be made if necessary.
Such a differential gear consists essentially of the chain-wheel, £/,
carrying a shaft, £, which gears in any manner with the shafts
and #». The particular form of gearing is optional ; provided that
it allows m and » to rotate relatively to each other. Thus in
Singer’s double-driving gear, the wheel, 4, was a spur pinion, with

Fic. 219.

its axis parallel to m n, and engaging with a spur-wheel and
an annular-wheel fixed respectively to the shafts, m and ». This
gear had the slight disadvantage that equal efforts could not be
communicated to the driving-wheels, that connected to the annular-
wheel of the gear doing most of the work.

The balance gear being only used differentially for steering, the
relative motion of the bevel-wheels, a, 4, ¢ (fig. 218), is very slow,
and there is not the same absolute necessity for excessive accuracy
as in toothed-wheel driving gear.

Example.—A tricycle with 28-in. driving-wheels, tracks 32 in.
apart, being driven in a circle of 100 fect radius at a speed of 20
miles an hour, required the speed of the balance-gear.

While the centre of the machine moves in a circle 1200 inches
radius, the inner and outer wheels move in circles (1200—16) and
(1200 + 16) inches radii respectively. The circumferences of these

R
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circles are respectively 2 X 1200, 27 X 1184, and 27 X 1216 inches.
While the centre of the machine moves over 27 X 1200 inches, the
outer wheel moves over 2w X 32 inches more thantheinner. The
relative linear speed is therefore 27X 3%_x 20
27 X 1200
= '5333 miles per hour
— 5333x 528012

to = 5632 inches per minute.

The circumference of a 28-in. wheel is 87'96 in. The number
of revolutions made by the outer part of the axle in excess of those
made by the inner is therefore

5632

8796 = 640 per minute.

The number of revolutions of the axle divisions relative to
the balance box, £, is therefore 3-20 per minute.
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CHAPTER XIX

MOTION OVER UNEVEN SURFACES

190. Motion over a Stone.—If a cycle be moving along a
perfectly smooth, flat road, neglecting the slight horizontal side-
way motion due to steering, the motion of every part of the
frame of the machine is in a straight line. Suppose a bicycle
to move over a stone which is so narrow that its top may be
considered a point. The motion being in the direction of the
arrow, the path of the centre of the driving-wheel will be a
straight line O A4 (fig. 220) parallel to the ground until the tyre

FiG. 220.

comes in contact with the obstacle at S, when the further motion
of the wheel centre will be in a circular arc, 4 B, having S as
centre. The further path of the wheel centre is the straight line,
B C, parallel to the ground. The path of the centre of the rear
wheel is of the same nature: a straight line, oa, until the tyre
meets the obstacle S, the circular arc, a 4, with .S as centre, and
then the straight line 4 .

The motion of any point rigidly connected to the frame of

R 2
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the bicycle can now be casily found. ILet 2 and Q be the
centres of the front and rear wheels respectively, and let it be
required to find the form of the path of the point & lying on the
saddle and rigidly connected to 2and Q. Having drawn on the
paper thé paths of 2 and Q (fig. 220), take a small piece of
tracing paper, and on it trace the triangle 2 Q R Move this

Fic. 22:.

sheet of tracing paper over the drawing paper so that the points
P and Q lie respectively on the curves O 4 B C and oabe. In
this position prick through the point &, and a point on its path
will be obtained. By repeating this process a number of points .
on the required path can be obtained sufficiently close together
to draw a curve through them. Figures 220, 221, and 222

respectively show the curves described by a point a short distance
above the saddle of an ¢ Ordinary,’ of a ¢ Rear-driving Safety’ with
whecls 28 in. and 30 in. diameter, and of a ‘Bantam’ with both
wheels 24 in. diameter, the point being midway between the wheel
centres. A number of such curves are given and exhaustively
discussed in R. P. Scott’s ‘Cycling Art, Energy, and Loco-

TTwa
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motion,’ though it should be noticed that the curved portions of
the saddle paths, due to the front and rear wheels passing over
the obstruction, are shown placed in wrong positions.

191. Influence of 8ize of Wheel —In figure 220 it will be
noticed that the total heights of the curved portions of the paths
of the wheel centres above the straight portions are the same,
whatever be the diameter of the wheel; but the greater the
diameter of the rolling wheel, the greater is the horizontal distance
moved over by the wheel centre in passing over the stone.
Thus with a large wheel the stone is mounted and passed over
more gradually, and thercfore with less shock, than with a small
wheel. Therefore, other things being the same, large wheels are
better than small for riding over loose stones lying on a good
flat road.

192. Influence of Saddle Position.—The motion of the saddle
may be conveniently resolved into vertical and horizontal com-
ponents. In riding along a level
road the vertical motion is zero
and the horizontal motion uniform.
When the front wheel meets an
obstacle the motion of the frame
may be expressed as a motion of
translation equal to that of the
rcar wheel centre, Q, together with
a motion of rotation of the frame
about Q as centre. Let w be the
angular speed of this rotation at
any instant. The linear motions
of /2and R relative to Q will be
in directions at right anglesto Q / and Q R respectively, and their
speeds will be w x Q £2and w x Q R respectively ; the lines Q 2
and Q R (fig. 223) may thercfore represent the magnitudes of the
velocities, the directions being at right angles to these lines.
Through Q draw a horizontal line, and to it draw perpendiculars
L’pand Rr. Then Qpand Qr will represent the vertical com-
ponents of the motions of / and Q respectively, ”p and R~
the horizontal components.

In the same way, if the front wheel be moving along the level,

FiG. 223.
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and the back wheel be passing over an obstacle, by drawing
perpendiculars R #! and Q ¢! to a horizontal line through 2, it can
be shown that Pg! and P! represent the vertical components of
the motions of Q and R respectively relative to 7, Q¢' and R !
the horizontal components.

Therefore, in a bicycle with equal wheels, the vertical ‘jolting’
communicated to the saddle by one of the wheels passing over
an obstacle is proportional to the horizontal distance of the
saddle from the centre of the other wheel, the horizontal
¢ pitching’ to the vertical distance from the centre of the other
wheel. With wheels of different sizes the average angular speeds
w are inversely proportional to the chords 4 B and e 4 (fig. 220);
this ratio must be compounded with that mentioned above.

If the saddle of a tricycle be vertically over the centre of the
wheel-base triangle, its vertical motion will be one-third that of
one of the wheels passing over a stone. In the ‘Rudge’ quadri-
cycle the vertical motion would be one-fourth, with similar con-
ditions as to position of saddle.

From the above discussion it is readily seen that the most
comfortable position for the saddle, as regards riding over rough
roads, is midway between the wheel centres, the vertical motion
of the saddle being then half that of a wheel going over a stone.
In a tandem, with one seat outside the wheel centres, the vertical
jolting of this seat is greater than that of the nearer wheel.
Again, as regards horizontal pitching, the high bicycle compares
unfavourably with the low; the rider on the top seat of the
¢ Eiffel” bicycle would have to hold on hard to avoid being pitched
clean out of his seat while riding fast over a rough road. A long
wheel-base is a decided advantage as regards horizontal pitching
in riding over stones. The angular speed w of the frame in
mounting over a stone is, other conditions remaining the same,
inversely proportional to the length of the wheel-base. There-
fore, the pitching is also inversely proportional to the length of
the wheel-base.

A curious point may be noticed in the case of the ¢Ordinary.’
From the saddle path shown (fig. 220) it will be seen that when
the rear wheel, after surmounting the obstacle, is descending
a_gai_n to the level, the saddle actually moves backwards. This
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can only happen at slow speeds ; at higher speeds the rear wheel
actually leaves the stone before touching the ground, and the
backward kink in the saddle path may be eliminated.

193. Motion over Uneven Road.——If the surface of the road
be undulating, but free from loose stones, the paths of the wheel
centres, £ and Q, will be curves parallel to that of the road surface,
and the path of any point rigidly
fixed to the frame can be found by
the same method. In a very bad »--
case, the undulations being very il
close together (fig. 224), it may g--.__ .- ~--g
happen that the radius of curvature
of one of the holes is less than
the radius of a large bicycle wheel.
In this case the path, g g, of the large wheel will have abrupt angles,
while that of the smaller wheel, ¢ ¢, may be continuous, the large
wheel being actually worse than the small one.

194. Loss of Energy.—If the motion of a wheel over an
obstacle took place very slowly, there would theoretically be no
loss of encrgy in passing over it, since the work done in raising

FiG. 224.
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the weight would be restored as the weight descended ; but at
appreciable speeds the loss of cnergy by impact and shock may
be considerable. Let a wheel moving in the direction of the
arrow (fig. 225) pass over an obstacle of such a form that the
wheel rises without sudden jerk or shock to a height 4, the speed
being so great that at its highest point the wheel is clear both of



248 Cycles in General CHAP. XIX.

the obstacle and the ground. If J7 be the weight (including
that of the wheel) resting on the axle, the energy lost will be # 4,
since the kinetic energy in position & is this amount less than
that in position @. The energy due to the fall from 4 to ¢ is
wasted in shock, there being no means of obtaining a forward
effort from the work done during the descent.

If the wheel strike the obstacle suddenly (fig. 226) and then
rises to the height 4, clear of the ground and obstacle, the energy
lost may be greater than /7%, the amount depending on the
nature of the surface of the wheel tyre dnd the obstacle struck.

If the horizontal speed of the wheel be such that it does not
leave contact with the obstacle in passing over it, the nature of
the losses of energy can be shown as follows :

The centre of the wheel at the instant of coming into contact
with the stone, S (fig. 227), is moving with velocity # in a hori-
zontal direction. This can be
resolved into a velocity #, in the
direction ¢ S, joining the wheel
centre to the stone, and a velocity
7y at right angles to this direction.
The velocity, #,, is the velocity
of impact of the wheel on the
stonc S, and the cnergy due to
this velocity may be entirely lost.
If ¢ be the index of elasticity, the velocity of rebound is ew,,
and with suitable elastic tyres the energy due to this velocity may
be saved. The loss of energy due to the impact on the stone
will be at least (sec. 69)

(x—ez)f;’f.........(x)

Fic. 227.

and may be as great as
muv;

20
“S

where m is the weight of the portion of the machine rigidly con-
nected to the wheel tyre.

The motion of the wheel continuing, the wheel centre mounts
over the stone, describing a circle, ¢, ¢4, with centre, S, and the
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tyre will again touch the ground on a point in front of the
stone. If the speed of the machine be uniform, the velocity of
the wheel centre as the wheel again just touches the ground may
be equal in magnitude to ©,, the same as immediately after
impact on the stone. This velocity, ©, (fig. 227), can be resolved
into horizontal and vertical components, z; and v,. v, is the"
velocity of impact on the ground, and the energy due to it is
either partially or entirely lost, and the final velocity of the wheel
centre is 3.

The assumption made above, that the speeds of the wheel
centre, C, when in positions ¢ and ¢, are equal, is equivalent to
assuming that the reactions of the stone on the wheel in any
position before passing the vertical line through the stone is
exactly equal to the reaction when at an equal distance past the
stone ; or, briefly, the reactions as the wheel rolls on and off the
stone are cqual. With a hard unyielding tyre this is not even
approximately true, except at very low speeds, consequently the
positive forward effort exerted on the wheel as it rolls off the
stone is less than the backward effort exerted as it rolls on, and
the speed is seriously diminished. With a tyre that can adapt
itself snstantancously to the inequalities of the road, the reactions
during rolling on and off “a stone are equal, and there is no loss
of energy. ‘The pneumatic tyre is the closest approximation to
such an ideal tyre, while rubber is much better than iron.

If the road surface be undulating, the undulations being so
long that the path of the wheel centre is a curve with no sudden
discontinuities, there may be no loss of energy due to the undu-
lations. If the undulations, however, be so short, and the speed
of the machine so great, that the wheel after ascending an undula-
tion actually leaves contact with the ground, there will be a loss
of energy due to the impact on reaching the ground.
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CHAPTER XX

RESISTANCE OF CYCLES

195. Expenditure of Power.—The energy a cyclist generates
while riding along a level road is expended in overcoming the
various resistances to motion. These may be classed as follows :
(1) Friction of bearings and gearing of the machine. (z) Rolling
resistance of the wheels on the ground. (3) Resistance due to
loss of energy by vibration. (4) Resistance of the air. The
power cxpended in overcoming these resistances is the power
actually communicated to the machine, and may be called the
brake power of the rider. The power actually generated in the
living heat-motor (the rider's body) may be called the sndicated
power ; the difference between the indicated and the brake powers
will be the power spent in overcoming the frictional resistance of
the motor—is.e. the friction of the rider’s joints, muscles, and
ligaments. At very high pedal speeds the brake-power is small
compared with the indicated ; in fact, by supporting the bicycle
conveniently, taking off the chain, and pedalling as fast as he
can, a rider may possibly develop more indicated power than
when racing on a track, though the brake power is practically zero.
The gearing of the bicycle, therefore, must not be made too low,
or the greater part of the rider’s energy will be spent in heating him-
self. The estimation of the work so wasted lies in the domain of the
physiologist rather than in that of the engineer ; we proceed, there-
fore, to the consideration of the brake power and its expenditure.

196. Resistance of Mechanism.—The frictional resistance of
the bearings is very small compared with the other resistances to
be overcome ; the resistance due to friction of the bearings of a
bicycle moving on a smooth track is practically the same at all
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speeds. Professor Rankin estimated this at Jyy part of the
weight of the rider, but exact experiments are wanting.

The frictional resistance of the chain possibly varies with the
pull on it, and as, other things being equal, the pull of the chain
increases with the speed, the resistance will also vary with the
speed. However, in comparison with the resistance due to roll-
ing and with the air resistance, that of the chain is small, and
may be included in the internal resistance of the machine, which
we may say is approximately constant at all speeds.

197. Rolling Resistance.—The resistance to rolling is, accord-
ing to the experiments of Morin, composed of two terms, one
constant, the other proportional to the speed. With a pneumatic
tyre on a smooth road the second term is negligible in comparison
with the first, according to M. Bourlet. The rolling resistance is
inversely proportional to the diameter of the wheel.

In ‘Traité des Bicycles et Bicyclettes,” C. Bourlet says that
the rolling resistance with pneumatic tyres is small, independent
of the speed, and on a dry road it varies from

005 Wtoror W . . . . . . . (1)

while on a racing track the probable value for the resistance is
‘004 IV, W being the total weight of machine and rider.

The resistance of a solid rubber tyre varies with the speed,
and may possibly be expressible by a formula of the form

. . . - R=A4+Bv, . .. .. .. (2

A and B being constants.
The power Z required to overcome the rolling resistance
‘005 IF at the speed v is

P =005 Wounits . . . . . . (3).

If 1V be expressed in lbs. and ¢ in miles per hour,
P =44 1o foot-lbs. per min. . . (4)

198. Loss ‘of ‘Energy by Vibration.—Onc of the great ad-
vantages of a pneumatic tyre is that little or no vibration is com-
municated to the machine and rider.  On a smooth road or track
with pneumatic tyres the loss due to vibration is probably
negligible ;" but on - a yough road it may be very large, and is
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possibly proportional to the speed. With solid tyres, a consider-
able amount of energy is lost in vibration. Bourlet’s experiments
on the road show that the work wasted in vibration is about one-
sixth of the total.

The use of a pneumatic tyre enables the tremulous vibration
to be almost eliminated, no vibration being communicated to any
part of the machine. For riding over very rough roads the intro-
duction of springs into the wheel or frame may still further
diminish vibration. The anti-vibrators should be placed so that
they protect as great a portion of the machine from vibration as
possible. In this respect a spring wheel should be better than a
spring frame, and a spring frame, in turn, better than a spring
saddle. The machine, as a whole, should be made sufficiently
strong and rigid that none of its parts yield under the stresses to
which they are subjected. Of course, when a spring yields and
again extends, a certain amount of energy is lost ; it thus becomes
a question as to when springs are advantageous or otherwise.
Probably the rougher the road, the more can springs be uscd with
advantage in the wheels, frame, and saddle ; whereas, on a smooth
racing track, their continual motion would simply provide means
of wasting a rider’s energy.

199. Resistance of the Air.—M. Bourlet discusses the air
resistance of a rider and machine, and concludes that it may be
represented by a formula

R=k5‘¢'}2. * e o s+ e e (5)

R being the air resistance, S thearea of the surface exposed, v the
speed, and 4 a constant. If the resistance be measured in kilo-
grammes, the area in square metres, and the speed in metres per
second, # = '06. The area of surface exposed will depend on
the size of the. rider and his attitude on the bicycle. A mean
value for S is *5 square metre ; then

R = ‘03 2? ¢ s e e e o o s (6)

If the resistance be measured in lbs., and the speed ¥ in miles
per hour,

R=ro13V7V* . . .+ ... (D
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The power required to overcome this resistance is
1’144 V3 foot-lbs. perminute . . . . . (8)

Table X. gives the air resistances and the corresponding powers
at different speeds calculated from these formula.

TABLE X.—AIR RESISTANCE TO ‘¢ SAFETY’ BICYCLE AND

RIDER.
Speed | Resistance - Power + Speed Resistance i Power
Miles per | Ibs. Foot-lbs. per - Miles per Tbs. Foot-Ibs. per !

our min. hour ! min.
5 ‘32 143 18 4-21 l 6,672
6 ‘47 247 19 ’ 469 | 7,846
7 l 64 | 392 20 | 520 ’ 9,152
8 ‘83 i 586 2t . 573 10,600
9 ' 1°0§ 834 22 | 629 12,180
10 | 130 1,144 23 688 ' 13,920
b § SR 1'57 1,522 24 7°49 15,820
12 187 1,977 25 | 812 ; 17,870
13 220 2,513 26 | 879 | 20,100
14 i 2°55 | 3,139 27 ' 948 ' 22,520
15 292 3,861 28 | 1019 | 25,110
16 3°33 4,685 29 10°93 27,900
17 376 | 5,620 o | 170 1 30,890

If the wind De blowing exactly with or against the cyclist, his
speed relative to the air must be used in the above formula.
Thus, if the wind be blowing at the rate of 10 miles per hour, and
the rider be moving at the rate of 2o miles per hour, while going
against the wind, the air resistance is that due to a speed of 30
miles per hour, while going with the wind there is still a resist-
ance due to a speed of 20 — 10 = 10 miles per hour.

If v be the speed of the cyclist, }” that of the wind, while
riding against the wind the relative speed is (v + V). 1If the
cyclist rides at a high speed, a very slight breeze against him may
increase the air resistance considerably. Whilst riding with the
wind the relative speed is (v — V). In this case, if the speed of
the wind be greater than that of the cyclist, there will be no
resistance, but, on the contrary, assistance will be afforded by the
wind. If the speed of the wind be less than that of the cyclist,
there will be air resistance due to the speed (v — V).
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The power required to overcome air resistance in driving at
o miles per hour against a wind blowing # miles an hour is

P=r1144v (v + V)?foot-lbs. per minute . . (9)
that required in going with the wind,
=1'144 v (v — V)? foot-lbs. per minute . . (10)

This equation gives also the power expended in overcoming air
resistance by a rider behind pace-makers ; the principal beneficial
effect of pace-makers being to create a current of wind of speed V
assisting the rider.

With a side wind blowing, the air resistance is greater than
that due to the relative speed. In moving through still air, or
against a head wind, the cyclist drags with him a certain quantity
of air. A side wind has_the effect of changing very rapidly the
actual particles dragged by the cyclist, so that in a given period of
time the mass of air which has to be impressed with the rider’s
speed is greater than with a head wind of the same speed.
Hence an increased resistance is experienced by the rider. .

A consideration of the figures in Table X. will show that
bicycle record-breaking depends more on pace-making arrange-
ments than on any other single factor. For example, to ride unpaced
at twenty-seven miles an hour requires the expenditure of more
than two-thirds of a horse-power to overcome only the air resist-
ance. Though an average speed of 27} miles per hour was kept
up by Mr. R. Palmer and by Mr. F. D. Frost in the Bath Road Club
1oo-miles race, 1896, it is most improbable that they worked at any-
thing like this rate during the whole period, the difference being due
tothedecreaseintheairresistancecaused by the pace-makersin front.

200. Total Resistance.—Summing up, the total resistance of
the bicycle can be expressed by the formula

R=d4+Bv+Co? . . . . . . (11)
and the power required to drive it by
P=Av+Bv*+CA. . . . . . (12)

A, B, and C being co-cfficients depending on the nature of the
mechanism and the condition of the road, but which are constant
for the same machine on the same road at different speeds.
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Figure 228 shows graphically the variation of the power required
to propel a cycle as the speed increases. The speeds are set off as
abscissee. For any spced, O S, the power required to over-
come the frictional resistance of the mechanism is set off as an
ordinate S A7 ; the power required to overcome rolling resist-
ance is A 7" (IV being taken at 180 lbs.) ; the power required

/] v S a 20 30
miles per hour

Fic. 228,

to overcome air resistance is 7R ; and the total power required
is the ordinate SR. The curve A can be lowered by improve-
ments in the mechanism, the curve 7" by improvements in the
tyres and track-surface, and the curve & by improvements in
pace-making.

Experiments on the total resistance of a cycle can be carried
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out in two ways. Firstly, by towing the machine and rider along
a level road by means of another machine, the pull on the tow-
line being read off from a spring-balance. Secondly, by letting
the machine and rider run down a hill, the gradient of which is
known, until a uniform speed is attained ; the ratio of the
resistance at the speed attained to the total weight of machine
and rider is the sine of the angle of inclination of the road. The
second method is not convenient for a series of experiments at
different speeds, since a number of hills of different gradients are
required ; but since no extra assistance is required, a rider may
use it when unable to use the first method.

Table XI., taken from ¢ Engineering,” January 10, 1896, giving
results of experiments by Mr. H. M. Ravenshaw, serves to show
the variation of the resistance according to the state of the road.

TaBLE XI.—REsisTaNcE oF CycLEs oN ComyMoON Roabps.

Total Pounds | Miles

i Machine ! Road weight, r | r

i : Ll?s. l‘::n x h‘:ur |

Flint . . . 120 37 i 4

» o e . . 290 3t 4

e . . 290 3t 10°4
BT . . 290 31 7
Tandem  Tri- by e . . 440 35 4
cycles, Pneu-: e . . 440 35 83

matic Tyres Asphalte pavement 290 31 * 4

” ”» 440 30 4

i ”" " 440 30 6

Heavy mud . . 290 73 4

, Wet mud . . 290 63 12

Flint . . . 200 33 3

Tandem Bi- J vy e . . 370 30 .5

cycles, Pneu-4  Heavy mud . . 200 95 | 5

matic Tyres l . ,r . . 370 78 ' 5

Flag pavement . 200 33 [

Flint . . . 220 ! 60 ' 4

Smgle] s sTlr-ll ( e e . . 220 | 6o .3
'cly;r:s' ol { Flag pavement . 220 | 60 l 5 z
~ Heavy mud . . 200 146 4 X
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CHAPTER XXI

GEARING IN GENERAL

201. A Machine is a collection of bodies designed to transmit
and modify motion and force. The moving parts of a machine
are so connected, that a change in the position of one piece in-
volves, in general, a certain definite change in the position of the
others. A bicycle or tricycle is a machine in which work done by
the rider’s muscles is utilised in changing the position of the
machine and rider. Coming to narrower limits, we may say a
cycle is a machine by which the oscillatory movement of the rider’s
legs is converted into motion of rotation of a wheel or wheels
rolling along the ground, on which is mounted a frame carrying
the rider. Still more narrowly, we may consider a cycle as a
mechanism for converting the motion of the pedals, which may
be cither oscillatory or circular, into motion of rotation of the
driving wheel.

202. Higher and Lower Pairs.—Each part of a machine
must be in contact with at least one other part; two parts of a
mechanism in contact and which may have relative motion
forming a pair. If the two parts have contact over a surface, as
is necessary when heavy pressures are transmitted, the pair is said
to be /ozver. From this definition there can only be three kinds
of lower pairs - turning pairs, sliding pairs, and screw pairs ; as in
a shaft and its journal, a cylinder and piston, a bolt and its nut,
respectively. If the elements of a pair do not have contact over
a surface, or if one of the elements is not rigid, the pair is said to
be Aigher, the relative motion of the pair being, as a rule, much
more complex than that of lower pairs. A pair of toothed-wheels
in contact, a flexible band and drum, a ball and its bearing-case,
are examples of higher pairs.
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Link or Connector—Two elements of consecutive pairs may
be connected toge?her by a /ink. An assemblage of pairs con-
nected by links constitute a kinematic chain, or a meckanism, or a
gear. The simplest kinematic chain contains four pairs con-
nected by four links ; it is therefore called a four-link mechanism.
If one link be fixed, a motion given to a second link will produce
a determinable motion of the two remaining links. Three pairs
united by three links constitute a rigid triangle, while a five-link
chain requires further constraint for movement of a definite
character to be produced. The four-link kinematic chain is the
basis of probably g9 per cent. of all linkwork mechanisms.

203. Classification of Gearing.—Professor Rankine defines
an elementary combination in mechanism as a pair of primary
moving pieces so connected that one transmits motion to the
other ; that whose motion is the cause is called the driver, the
other the follower. The connection between the driver and
follower may be :

(1) By rolling contact of their surfaces, as in toothless wheels.

(2) By sliding contact of their surfaces, as in toothed-wheels
and cams, &c.

(3) By flexible bands, such as belts, cords, and gearing chains,

(4) By linkwork, such as connecting-rods, &c.

(5) By reduplication of cords, as in the case of ropes and
pulleys.

(6) By an intervening fluid.

The driving gear of cycles has been made from classes (2), (3),
and (4), each of which will form the subject of a separate chapter.
An example of (1) is found in the ‘Rotherham’ cyclometer, the
wheel of which is driven by rolling contact from the tyre of the
front wheel. The pump of a pneumatic tyre is an example
of (6). We cannot recollect an example in cycle construction
corresponding to (s5), though it would be easy to design one to
work in connection with a pedal clutch gear, such as the ¢ Merlin.’

204. Efficiency of a Machine.—If the pairs of a mechanism
could perform their relative motion without Triction, the work
done by the prime mover at the driving end of the machine
would be transmitted intact to the driven end ; in other words,
the work got out of the machine would be equal to that put into
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it. But however skilfully the parts be designed to reduce friction
to the lowest possible amount, there is always some frictional
resistance which consumes energy, so that the work got out of
the machine is less than that put into it, by the amount of work
spent in overcoming the frictional resistance of the pairs.

The ratio of the work transmitted by the machine to that
supplied toit is called the efficiency of the machine. The efficiency
of a machine will be higher according as the number of its pairs
is small ; an increase in the number of pairs increases the oppor-
tunities for work to be wasted away. Thus, in general, the
simpler the mechanism used, the better will be the results
obtained.

It seems perhaps unnecessary to say that no advantage can be
derived from mere complexity of mechanism, but the number of
driving gears for cycles that are being patented shows either that
the perpetual motion inventor has plenty of vitality, or that the
technical common sense of a large number of cycle purchasers is
not of a very high standard.

205. Power.—We have already seen that the work done by
an agent is the product of the applied force, into the distance
through which the point of application of the force is moved in
the direction of the applied force. The power of an agentis equal
to the rate of doing work—that is, power may be defined as the
work done per unit of time. 1If E be the work done in £ seconds,
and /7’ the power of the agent, then
Vo

.
4
.

P=

But £ is cqual to #s, where /' is the force acting and s the
distance moved ; therefore
P = ﬁs.
!

But i is cqual to the speed ; therefore
P=Fv . . . . . .. .(0)

That is, the power of the agent is cqual to the product of the

acting force and the speed of its point of application. The same
53
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principle is expressed in the maxim, ‘What is gained in power
is lost in speed’; the word ‘power’ in this maxim having
the meaning we have associated with ¢force’ throughout this
book.

In a frictionless machine the power is transmitted without loss.
The above equation shows that any given horse-power may be
transmitted by any force #, however small, provided the speed v
can be made sufficiently great.  On the other hand, if the speed of
transmission be very small, a very large force, %, may correspond
to a very small transmission of power. An example of the former
case occurs in transmitting power to great distances by means of
wire rope. Here the speed of the rope is made as large as it
is found practicable to run the pulleys, so that a rope of com-
parative small diameter may transmit a considerable amount of
power. An example of the latter case occurs in a hydraulic
forging press, where the pressure exerted on the ram is, in, many
cases, 10,000 tons ; but the speed of the ram being small -only a
few inches per minute- -the horse-power required to work such a
press may be comparatively small.

These principles are of direct application to the gearing of
cycles.

Example 1. Supposc two rear-driving bicycles each to have
28-inch driving-wheels geared to 356 inches ; let the bicycles be
cqual in every 1espect, except that in one the numbers of teeth in
the wheels on the crank-axle and hub are 16 and 8 respectively,
while in the other the numbers are 18 and 9 respectively. When
going along the same gradient at the same speed, the speeds of
the chain relative to the machine are in the ratio of 8 to 9
consequently, the pulls on the chain will be in the ratio g to 8,
that on the chain of the bicycle having the smaller wheels being
the greater.

Example 11— 1.et two bicycles be the same in every respect,
except that in one the cranks are 6 inches long, in the other
7 inches.  When running along the same road at the same speed,
the work done in overcoming the resistance will be the same in
the two cascs, and, therefore, the work done by the pressure of
the feet on the pedals is the same in both cases.  But the pedals’
speeds are in the ratio of 6 to 7, therefore the average pressures
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to be applied to the pedals are in the ratio 7 to 6, the shorter
crank requiring the greater pressure.

Example II7.—Suppose two Safety bicycles to be equal in
every respect, except that one is geared to 56 inches, the other to
63 inches. With equal riders, running along the same road at the
same speed, the work done in both cases will be equal. But the

" distances moved over during one revolution of the crank are in
the ratio of 56 to 63, that is, 8 to 9. The numbers of revolutions
required to move over a given distance will therefore be in the
ratio of the reciprocals of the distance—that is, 9 to 8. Conse-
quently, the average pressures to be applied to the pedals in the
two cases will be in the ratio of 8 to g, the bicycle with the low
gear requiring the smaller pressure on the pedals

The whole question of gear for a bicycle thus resolves itself
into a question of what will suit best the convenience of the rider.
Assuming that the maximum power of two riders is exactly the
same, one may be able to develop his maximum power by a com.
paratively light pressure on the pedals and a high speed of revolu-
tion of the cranks, the other may develop his maximum power
with a heavier pressure and a smaller speed of revolution of the
crank-axle. The former would therefore do his best work on a
lower geared machine than the latter. The question of length of
crank depends also on the same general principles, different riders
being able to develop their maximum powers on different lengths
of crank.

The maximum power a rider can develop by pedalling a
crank-axle is probably at low speeds proportional to the speed of
driving ; at higher speeds the power does not increase so rapidly
as the speed, and soon reaches an absolute maximum ; at still
higher speeds the rapidity of pedalling is too great, and the power
actually communicated to the crank-axle rapidly falls to zero.
These variations of the power with the speed are graphically
represented by the curves 2 and 7, (fig. 228), /°, being for longer
sustained effort than /; a certain speed of the crank-axle corre-
sponding to a definite speed of the cycle on the path, so long as
the gearing remains unaltered. The height of the ordinates will
depend on the duration of the ride, and the maximum power aé
for an effort of short duration may be developed at a less axle
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speed than the maximum 4, 4, for a longer effort. By increasing
the amount of gearing-up, the abscissz of the curve would be all
proportionately increased, while the ordinates remain as before.
The best gearing-up possible for the rider will be such that the
power curve of the machine intersects the rider’s power curve at
the highest point of the latter. From 4, the highest point of the
rider’s power curve with a certain gearing-up, draw 4 4! to intersect
at 5' the power curve R of the machine, then the rider will
develop the greatest speed ¢4' on the machine if the gearing-up
be increased in the ratio of ¢ 4 to ¢ 4'. If, as seems to the author
most probable, the ratio ;Zl

the ratio 48 for the longer effort, the gearing-up should be
b P

for the shorter effort is greater than

greater for the former than for the latter. That is, to attain in
all races his highest possible speed, the shorter the distance the
higher should be the gear used by the rider.

Very little is known as to the maximum power that can be
developed by a cyclist, no accurate experiments, to the author’s
knowledge, having been made. Rankine gives 4,350 foot-lbs.
per minute as the average power of a man working eight hours
raising his own weight up a staircase or ladder, and 17,200 foot-lbs.
per minute in turning a winch for two minutes. Possibly racing
cyclists of the front rank develop for short periods two-thirds of
a horse-power—i.e. 22,000 foot-lbs. per minute. If this estimate
and that of the air resistance (sec. 199) be correct, from figure 228
it is evident that a speed of 28 miles per hour could not be
attained on a single bicycle, in still air, without pace-makers, even
though the mechanism and the tyres were theoretically perfect.
It should be noted that the conventional horse power, 33,000 foot-
Ibs. per minute, introduced by Watt, and employed by engineers
as the unit of power, is considerably in ‘excess of the average
power of a draught horse.

206. Variable-speed Gear.—The maximum power of any rider
is exerted at a particular speed of pedal and with a particular
length of crank. The best results on all kinds and conditions of
roads would probably be attained if the pedal could always be
kept moving at this particular speed whatever the resistance ; the
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gearing would then have to vary the distance travelled over per
stroke of pedal, until equilibrium between the effort and resistance
was established. An ideal variable gear would be one which
could be altered continuously and automatically, so that when
going uphill a low gear was in operation, and when going down-
hill a high gear. A number of two-speed gears have been used
with success, and are described in chapter xxvii.,, but no con-
tinuously varying gear has been used for a cycle driving gear,
though such a combination is well known in other branches of
applied mechanics.

207. Perpetual Motion.—Many inventors and schemers do
not appreciate the importance of the principle of ¢what is gained
in force, or effort, is lost in speed.’” Since for a given power
the effort or force can be increased indefinitely by suitable
gearing, and likewise the speed, they appear to reason that by
a suitably devised mechanism it may be possible to increase
both together, and thus get more power from the machine
than is put into it. A crank of variable length, the leverage
being greater on the down than on the up-stroke, is a favourite
device. The Simpson leverchain is another device having the
same object in view. The angular speeds of the crank-axle and
back hub are inversely proportional to their numbers of teeth ;
with an ordinary chain the distances of the lines of action from
the centres are directly proportional to these numbers. By driving
the back hub chain-wheel from pins on the chain links at a greater
distance from the wheel centre, it was claimed that an increased
leverage was obtained, and that the lever-chain was therefore
greatly superior to the ordinary. It is possible, by using an
algebraic fallacy which may easily escape the notice of anyone
not sufficiently skilled in mathematics, to prove that 2 x 2 =g5;
but though the human understanding may be deceived by the
mechanical and algebraic paradoxes, in neither case are the laws
of Nature altered or suspended. When once the doctrine of the
‘.conservation of energy’ is thoroughly appreciated, plausible
mechanical devices for ¢reating energy will receive no more atten-
tion than they deserve.

208. Downward Pressure.—In all pedomotive cycles the
general direction of the pressure exerted by the rider on the pedals
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is vertically downwards. If P be the average vertical pressure
and 4 the vertical distance between the highest and lowest points
of the pedal’s path, the work done by the rider per stroke of pedal
is Pd. This is quite independent of the form of the pedal path.

209. Cranks and Levers.—If the pedals are fixed to the
ends of cranks revolving uniformly, the vertical component of
the pedal’s motion will be a simple harmonic motion, and,
neglecting ankle action, the motion of the rider’s knee will be
approximately simple harmonic motion along a circular arc.

When the crank is vertical, its direction coincides with that of
the vertical pressure, and consequently no pressure, however great,
will tend to drive the crank in either direction. The crank is
then said to be on a ‘dead-centre’ In steam-engines, and
mechanisms in which the crank is employed to convert oscillating
into circular motion, a fly-wheel is used to carry the crank over
the dead-centre. In cycles, when speed has been got up, the
whole mass of the machine and rider tends to continue the
motion, and thus acts as a fly-wheel carrying the crank over the
dead-centre, so that in riding at moderate or high speeds the
existence of the dead-centre is hardly suspected. In riding at
a very slow speed, however, the existence of the dead-centre is
more manifest. If two cranks are placed at right angles to each
other on the same shaft, while one is on the dead-centre the other
is in the best position for exerting the downward effort, and
there is no tendency of the shaft to stop.

In the above discussion we have assumed that the connecting-
rod which drives the crank can only transmit a simple thrust or
pull ; if, in addition to this, the connecting-rod can transmit a
transverse effort there may be no dead-centre. In turning the
handle of a winch by hand, the arm acts as a connecting-rod
which can transmit, thrust, pull, and transverse effort, so that no
dead-centre exists. In Fleming & Ferguson's marine-engine
two cylinders are connected by piston-rods and intermediate links
to two corners of a triangular connecting-rod, the third corer of
which is at the crank ; with this arrangement there is no dead-
centre, the single crank and triangular connecting-rod being in
this respect equivalent to two cranks at right angles.

The existence of the dead-centre is supposed by some to be

Y
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a disadvantage inherent to the crank, but the efficiency of the
mechanism is not in any way directly affected by it.

210. Variable Leverage Cranks.—One favourite notion of
those inventors who have no clear and exact ideas of mechanical
principles, is to have a crank of variable length arranged so
that the leverage may be great during the down-stroke of the
pedal and small during the up-stroke ; their idea evidently being
to obtain all the mechanical advantages of a long crank, and yet
only make the foot travel through a distance corresponding to a
short crank. We have shown above that, presuming the pressure
is vertical, the work done per stroke of pedal depends only on the
pressure applied, and the vertical distance between the highest and
lowest points of the pedal path ; the distance of the pedal from the
centre of the crank-spindle having no direct# influence whatever.
The pedal path in most of the variable crank gears that have ap-
peared from time to time is simply an epicycloidal curve which does
not differ very much in shape from a circle, but which is placed
nearer the front of the machine than an equal circle concentric
with the crank-axle. Thus, the gear only accomplishes in a
clumsy manner what could be done by a simple crank, having its
axle placed a little further forward than that of the variable crank.

Let O (fig. 229) be the centre of a variable crank, and ¢d the
pedal path during the up-stroke. Let the length of the crank
become greater, the path of the pedal during
this extension being 4 a, and let the arc a é
be the pedal path during the down-stroke.
The crank will then shorten, é¢ being the
pedal path. If the pressure be vertically
downward, work will be done only while the
pedal moves from a to 4, and the angle of
driving will be the small angle @a04. Thus
while with a variable crank a greater turning effort may be exerted
than with a fixed crank, the arc of action is correspondingly less.

211. Speed of Knee-joint during Pedalling.—- Regarding that
part of the leg between the knee and the foot as a connecting-rod,
that betwcen the knee and the hip-joint as a lever vibrating about
a fixed centre, the speed of the knee corresponding to a uniform
speed of the pedal can easily be determined by the method of

FiG. 22,
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section 33. Figure 23 is a polar curve showing the varying
speed of the knee for different positions of the crank. From this
curve it will be seen that on the down-stroke the maximum speed
is attained when the crank is nearly horizontal, but on the up-stroke
the maximum speed is not attained till the crank is nearly 45°
above the horizontal. The speed then rapidly diminishes, and is
nearly zero when the crank is vertical. The shorter the crank, in
comparison with the rider’s leg, the more closely does the motion
of the knee approximate to simple harmonic motion ; with simple
harmonic motion the polar curve is two circles.

In any gear in which a crank connected to the driving-wheel
is used, the speed of the knee-joint will vary approximately as
above described—7.e. it will gradually come to rest as it ap-
proaches its highest and lowest positions, then gradually increase
in speed until a maximum is attained.

212. Pedal-clutch Mechanism.—Instead of cranks, clutch
gears have been used for the driving mechanism. Inthesea cylin-
drical drum is placed at each side of the axleand runs freely on it.
A long strap, with one end firmly fixed to the drum, is coiled
once or twice round it, the other end is fastened to the pedal
lever. When the pedal is depressed, the drum is automatically
clutched rigidly to the shaft ; when the pressure is removed from
the pedal, the pedal lever is raised by a spring and the drum
released from the axle.  One of the most successful clutch gears
was that used on the ¢Merlin’ bicycles (fig. 176) and tricycles
made by the Brixton Cycle Company.

The general advantage which a clutch gear was supposed to
have as compared with a crank was that any length of stroke
could be taken from a pat of an inch up to the full throw of the
gear. However, cven supposing that the clutches which lock
the drums to the axle and the springs which lift the pedal levers
are perfect in action, the gear has the serious defect that the down-
stroke of the pedal begins quite suddenly and is performed at a
constant speed ; thus the legs must have a considerable speed
imparted suddenly to them. At moderate and high speeds this
is a decided disadvantage as against the gradual motion required
for the crank-geared cycle. There is the further serious practical
disadvantage that no clutch that has been hitherto designed is
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perfectly instantaneous in its action of engaging and disengaging.
When a clutch is used for continual driving, as in the clutch
driving gears of some of the early tricycles, and where no great
importance need be attached to the delay of a second or two in
the action of the clutch gear, the case is quite different. Mr.
Scott, in ¢ Cycling Art, Energy, and Locomotion,’ has put the
comparison between the crank gear and clutch gear for pedals in
a nutshell thus: “In the crank-clutch cycle, as in other uses,
the immediate solid grip is a matter of very little concern; if a
half turn of the parts takes place before clutching, it does very
little harm, since it is so small a fraction of the entire number of
revolutions to be made before the grip is released. But if a grip
is to be taken at every down-stroke of the foot, as in a lcver-clutch
cycle, the least slip or lost motion is fatal.”

These two objections are so weighty, that in spite of the
immense advantage of providing a simple variable gear, pedal-
clutch gears have never been much used.

213. Diagrams of Crank Effort.—Though the pressure on
the pedal may be constant during the down-stroke, the effort
tending to turn the crank will vary with the
varying crank position. The actual pressure on
the pedal may be resolved into two components,
parallel and at right angles to the crank; the
former, the radial component, merely causes pres-
sure on the bearing, and, since no motion takes
place in its direction, no work is done by it ; the
latter, the tangential component, constitutes the
active effort tending to turn the crank. If O C
(fig. 230) be the crank in any position, and 7’ the
total pressure on the pedal, the radial and tan-
gential components, £ and 7, are equal to the
projections of /” respectively parallel to, and at right angles to
the crank O C. If the tangential component 7" be set off along
the corresponding crank direction, a po/ar curve of crank effort
will be obtained.

If the pressure, /°, be constant during the down-stroke, and
be directed vertically downwards, the polar curve of crank effort
will be a circle. Let p be the effort exerted by the rider at any

Fic. a30.
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instant at his knee-joint in the direction of the motion of the
latter, let # be the corresponding tangential effort on the pedal,
let s be a very small space moved through by the pedal, and s!
the corresponding space moved through by the knee-joint.
Then the work done at the knee-joint is ps!, the corresponding
work done at the pedal #s; these two must be equal, presuming
there is no appreciable loss in the transmission. Therefore
s

l=}p . e e e e e .(2)
1
But '; is the ratio of the speeds of the knee-joint and pedal

respectively, and is represented by the intercept D f (fig. 21).
If, therefore, the effort at the knee-joint be constant during the
down-stroke of the pedal, figure 23 is the curve of crank effort as
well as the speed curve of the knee.

If, starting from any position, the distance moved through
by the pedal relative to the machine be set off along a horizontal

line, and the corre-

sponding tangential

effort on the crank

be erected as an or-

dinate, a rectangular

Fic. 231. curve of crank effort

will be obtained.

Corresponding to the circle as the polar curve of crank effort,

the rectangular curve will be a curze of sines.  Figure 231 shows

the rectangular curve corresponding to the down-stroke polar
curve in figure 23.

The area included between the base line and the rectangular
curve of crank effort represents the amount of work done. The
mean height of the rectangular curve therefore represents the
mean tangential effort to be applied at the end of the crank in
order to overcome the resistance of the cycle. ‘

214. Actual Pressure on Pedals.—The actual pressure on
the pedal during the motion of the cycle is not even approxi-
mately constant. Mr. R. P. Scott investigated the actual
pressure on the pedal by means of an instrument which he calls
the ¢ Cyclograph,’ the description of which we take from ¢ Cycling
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Art, Energy, and Locomotion.” “ A frame, 4 A4 (fig. 232), is pro-
vided with means to attach it to the pedal of any machine. A
table, B, supported by springs, £ £, has a vertical movement
through the frame 4 4, and car- ——a - A

ries a marker, C. The frame carries £ 5;

a drum, D, containing within me- (HeET— O =
D ,\:ED"
»)

chanism which causes it to revolve
regularly upon its axis. The cylin- |-

drical surface of this drum D is = == g
wrapped with a slip of registering Bl € 02 D
paper removable at will. When i

we wish to take the total foot
pressure, the cyclograph is placed Fic. 232.
upon the pedal and the foot upon
the table. The drum having been wound and supplied with the
registering slip, and the marker C with a pencil bearing against
the slip, we are ready to throw the trigger and start the drum, by
means of a string attached to the trigger, which is held by the
rider so that he can start the apparatus at just such time as he
desires a record of the pressure.”

Figure 233 shows a cyclograph from a §2-inch ‘Ordinary’ on a
race track, speed 18 miles per hour ; figure 234 that from the same

NMAENNAAWVY

Fig. 233.

A

<
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machine ascending a gradient 1 in 10, speed 4 miles an hour;
and figure 235 is from the same machine back-pedalling down a

150 2004+
700
s0

Fia. 234.

gradient 1 in 12. Figure 236 is from a rear-driver geared to
54 inches up a gradient 1 in 20 at a speed of 9 miles an hour ; and
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figurc 237 is from the same machine going up a gradient of 1 in
7 at a speed of 10 miles per hour. The figures on the diagrams

150
100
50

Fi1G. 23s.

are 1bs. pressure on the pedal. These curves and many others
are discussed in the work above referred to.
These curves give no notion as to the varying fangential effort

200

/50
/100
50

FiG. 236.
on the crank, which is, of course, of more importance than the
total pressure.  Mallard & Bardon’s dynamometric pedal, referred

to by C. Bourlet, is an instrument in which the tangential com-
ponent of the pedal pressure is measured and recorded.

215. Pedalling.--A\ vertical push during the down-stroke of
the pedal is the most intense effort that the cyclist can com-
municate, and unfortunately it is the only one that many cyclists
are capable of excrting. Irom Scott's cyclograph diagrams it
will be seen that in only one case is the pedal pressure zero
during the up-stroke. The first improvement, therefore, that
should be made in pedalling is to lift the foot during the up-
stroke, though not actually allowing it to get out of contact with
the pedal.  Toe-clips will be of advantage in acquiring this.

Next, just before the crank reaches its upper dead-centre a
horizontal push should be exerted on the pedal, and before it
reaches the lower dead-centre the pedal should be clawed back-
wards. ‘Thesc motions, if performed satisfactorily, will consider-
ably extend the are of driving.

L
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Ankle Action.—To perform these motions satisfactorily the
ankle must be bent inwards when the pedal is near the top, and
fully extended when near the bottom. Figures 238, 239, and
240, from a booklet describing the ‘Sunbeam’ cycles issued by
Mr. Jonn Marston, show the positions of the ankle when the
crank is at the top, the middle of the down-stroke, and the
bottom respectively. The method of acquiring a good ankle
action is well described in the ¢‘Sunbeam’ booklet and in
Macredy’s ‘ The Art and Pastime of Cycling.” Besides increasing

Fii, 238. FiG. 239

the arc of driving, ankle action has the further advantage of
diminishing the extent of the motion of the leg. With a good
ankle action the speed curves shown in figures 23, sor, and
511 may be considerably modified ; in fact, the addition of a fifth
link (between the foot and ankle) to the kinematic chain in
figurc 22 makes the motion of the leg indeterminate.

If the shoe of the rider be fastened to the pedal an upward
pull may be exerted, and the action of pedalling becomes more
like that of turning a crank by hand, the arc of action being
extended to the complete revolution.  With pulling pedals more
work is thrown on the flexor muscles of the legs, to the corre-
sponding relief of the extensors.

216. Manamotive Cycles. A few cycles, principally tricycles,
have been designed to be driven by the action of the hand and
arms.

Singers’ ‘Velociman’ has been for a number of years the
best example of this type of machine. Figure 241 shows an up-
to date example. The effort is applied by the hands to two long
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levers, which, by sliding joints in place of connecting-rods, drive
cranks at opposite ends of an axle ; this axle is connected by chain

FiG. 241.

gearing to the balance gear on the driving-axle. The steering is
done by the back pressing against a cushion supported at the end
of a long steering bar.

217. Auxiliary Hand-power Mechanisms.—A number of
cycles have been made from time to time with gearing operated
by hand, having the intention of supplementing the effort com-
municated by the pedals. The idea of the inventors is that the
greater the number of muscles concerned in the propulsion, the
greater will be the speed, or a given speed will be obtained with
less fatigue ; but though this may be true for extraordinary efforts
of short duration, it is probably quite erroneous for long-con-
tinued efforts. Whatever set of muscles be employed to do work,
a man has only one heart and one pair of lungs to perform the
functions required of them. It is a matter of everyday experience
that the cyclist can tax his heart and lungs to their utmost,
using only pedals and cranks ; so that, unless inventors can pro-
vide a method of stimulating these organs to do more than they
are at present capable of, it seems worse than useless to compli-
cate the machine with auxiliary hand-power mechanism. Re-
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garded as a motor, the human body may be compared to a
number of engines deriving steam from one boiler, supplied
with feed-water by one feed-pump. If one engine is capable
of using all the steam generated in the boiler, no additional, but
rather less, useful work will be obtained by setting additional
engines running. It is a fact well known to engineers that
a steam-engine works most economically when running under
its heaviest load. One engine, therefore, will utilise the steam
generated in the boiler more efficiently than several. The lungs
may be compared to the furnace of the boiler, the blood to the
feed-water, the heart to the feed-pump which circulates the feed-
water, the muscles of the legs to an engine capable of utilising all
the energy supplied by the combustion of the fuel in the furnace,
the arms to a small engine. If the analogy can be pushed so far,
less work will be got from the body by using both legs and arms
simultaneously than by using the legs only ; and this quite inde-
pendently of the frictional resistance of the additional mechanism.

The ¢ Road-sculler’ and ¢ Oarsman’ tricycles were designed so
that the rider might exercise the muscles of his legs, back, chest,
and arms, as in rowing. The speed attained was less than in the
crank-driven tricycle, the mechanism being more complex and
therefore less efficient, while from the foregoing discussion it
seems probable that the rider, though using more muscles,
actually developed less indicated power.
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PART III
DETAILS

CHAPTER XXII

THE FRAME (DFSCRIPTIVE)

218. Frames in General.—The frame of a bicycle forms
practically a beam which carries a load—the weight of the rider—
and is supported at two points, the wheel centres. In order to
allow of steering, this beam is divided into two parts connected
by a hinge joint— the steering-head. The two parts are some-
times referred to as the ‘front-frame’ and the ‘rear-frame’; the
front-frame of a ¢ Safety ’ including the front fork, head-tube, and
the handle-bar. The rear-frame has assumed many forms,
which will be discussed in some detail. In all bicycles that have
attained to any degree of success the rear-frame has been the larger
of the two; hence sometimes when ‘the frame’ is mentioned
without any further qualification, the rear-frame is meant. It is
usually evident from the context whether ‘the frame’ means the
rear-frame or the complete frame.

219. Frames of Front-drivers.—The ¢Ordinary’ has the
simplest, structurally, of all cycle frames, consisting of a single
tube, called the backbone, forked at its lower extremity for the
reception of the hind wheel, and hinged to the top of the
fork carrying the front wheel. The frame of the ¢Geared
Ordinary’ is the same as that of the ¢ Ordinary,’ the dis-
tance between the seat and the top of the driving-wheel
being too small to admit of bracing the structure. With the
further reduction of the size of the driving-wheel, and the greater
distance obtained between the saddle and top of the driving-

wheel, it becomes possible to use a braced frame. Figure 242
T2
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shows a front-driving frame made by the Abingdon Works
Company (Limited). Here the weight of the rider is taken up °

by the two straight tubes,
each of which will be sub-
ject to bending-moment due
to half the total weight.
Figure 132 shows one
form of frame used by the
Crypto Works Company

-(Limited), in their ¢Bantam.’

Fi1c. 242.

The bracing in this is more
apparent than real, since the
weight of the rider is trans-
ferred to the middle of a
straight tube of very little less
length than the total distance

between the wheel centres. This tube must, therefore, be made
strong enough to resist the bending-moment.

FiG. 243.

Figure 243 shows the frame of the ‘ Bantamette,” made by the
same company, and which can be ridden by a lady with skirts,
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Here, of course, the backbone is subjected to bending-stresses,
and a very strong tube must be used for it. Figufe 291 shows a
properly braced front-driving frame designed by the author, which
is practically equivalent to a triangular truss. The short tube join-
ing the steering-head to the seat-lug is made stout enough to resist
the bending due to the saddle-pin attachment, while the seat-struts
are subjected only to compression, and the lower stays to tension.
220. Frames of Rear-drivers.—The rear-driving chain-driven
¢ Safety ’ introduced in 1885 is kinematically the same as the popu-
lar machine of the present day. The greatest difference between
them lies in the design of the frame. So many designs of frame
have been used that we can only notice a few general types here.
The original ‘Humber’ frame (fig. 128) has a general
resemblance to the present-day diamond-frame, though from a
structural point of view, the want of a tube joining the saddle-pillar
to the crank-axle makes it greatly different as regards strength.
Figure 244 shows the ‘ Pioneer’ dwarf Safety, made by H. ]J.
Pausey, 1885. This is of the cross-frame type, and consists
practically of two
members, one join-
ing the driving-
wheel spindle to
the steering-head,
the other running
from the saddle to
the crank-axle. It
will be noticed that
the frame is not
braced or stayed in
any manner, so that
the whole weight
of the rider is trans-
ferred to the back-
bone. When driving, the pull of the chain tends to bring the crank-
axle and driving-wheel centres nearer together, and there being no
direct struts to resist this action, the frame is structurally weak. In
this respect itis much worse than the * Humber’ frame (fig. 128).
Figure 126 shows the ¢ Rover’ Safety made by Messrs. Starley
& Sutton, 1885. The frame is of the open diamond type, the

Fi1G. 244.
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front fork is vertical, and the steering is not direct, but the handle-
bar is mounted on a secondary spindle connected by short links

to the front fork.
Figure 245 shows a Safety made by the Birmingham Small

Arms and Metal Co., Limited. The principal difference between

F1G. 24s.

this frame and that of figure 244 consists in the substitution of

indirect for direct steering.
Figure 127 shows the ¢ Rover’ Safety, made by Messrs. Starley

Fia. 246.

& Sutton in 1886. The frame is of the open diamond type, with
curved tubes, and direct steering is used. The approximation

T wm
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very imperfect.” This arrangement for controlling the motion of
the stecring-wheel is the same as used in the ¢ Quadrant’
tricycle.

The frame of the ‘Rover’ Safety of 1888 (fig. 255) shows a

FiG. 2ss.

great advance on any of the earlier frames above described. It
may be described as a combination of the cross- and diamond-

Fi.. 256.

frames.  The main tube trom the steering-head is joined on about
the middle of the down-tube from the saddle to the crank-bracket,
which thus may be considered to be supported at its ends and
loaded in the middle, and must therefore be fairly heavy to resist
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the bending-moment on it. Another weak point in the design is
the making of the top tube curved instead of straight.
The ¢ Referee’ frame (fig. 256) was one of the earliest with

FiG. 257.
practically perfect bracing. The crank-bracket being kept as near

as possible to the rim of the driving-wheel, the diamond was
stiffened by a curved down-tube. A short vertical saddle-tube was

Fic. 258.

continued above the top tube, thus allowing the saddle and pin to
be turned forward or bart-vard—a good point which has been

ahandoned in 'ater fras. . alliencket stearing was 1ced
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Figure 257 shows the Safety made by Singer & Co., 1888,
the frame of which differs very little essentially from that of figure
255.

FiG. 2s9.

Figure 258 shows the ‘ Singer’ Safety of 1889, the frame of
which differs considerably from all types hitherto described. The

Fii. 260,
remarks applied to the design of the frame in figure 255 may also
be applied to this frame.
The ‘Ormonde’ (fig. 259) and the ¢ Mohawk ’ (fig. 260) frames

may be noticed, the latter having the down-tube from saddle to
crank-bracket in duplicate.
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Figure 130 shows the ‘ Humber’ Satety of 1889. This frame
gives the first close approximation to the present almost univer-
sally used ¢ Humber ’ frame.

In 1890 the ¢ Humber’ Safety, with extended wheel-base, was
introduced. In this machine the distance between the crank-
axle and the driving-wheel was increased, thereby increasing the
distance between the points of contact of the two wheels with the
ground. With this increased distance it was possible to join the
scat-lug to the crank-bracket by a straight down-tube, thereby
giving the well-known ¢ Humber’ frame (fig. 131). The stem of
the saddle-pin goes inside this tube, and a neater appearance is
obtained thereby. This frame is not a perfectly braced structure,
the introduction of a
tube to form one of the
diagonals of the dia-
mond being necessary
to convert it into a per-
fectly framed structure.
This has been done
in the ‘Girder’ Safety
frame (fig. 296). Witha
well designed ‘ Humber’
frame, however, the pos-
sible bending-moment
on the tubes, due to the omission of the diagonal, is so
small that it is practically not worth while to introduce the extra
tube.

Quite recently a ¢ pyramid -frame (fig. 261) has been introduced
in America. It remains to be seen whether the excessive rake
of the steering head, necessary with this design, will allow of the
easy steering we are accustomed to with the diamond-frame.

Bamboo Frames.—From the discussion of the stresses on the
frame (chap. xxiii.) it will be secn that when the frame is properly
braced, and its members so arranged that the stresses on them
are along their axes, the maximum tensile or compressive stress
on the material is small. If a steel tube were made as light as
possible, with merely sufficient sectional area to resist these
principal stresses, it would be so thin that it would be

FiG. 261

TN
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unable to resist rough handling, and would speedily become
indented locally. A lighter material with greater thickness,
though of less strength, would resist these local forces better.
The bamboo frame (fig. 262) is an effort in this direction, the

Fic. 262.
bamboo tubes being stronger locally than steel tubes of equal
weight and external diameter.

Aluminium Frames.—¥rom the extreme lightness of aluminium
compared with iron or steel, many attempts have been made to
employ it in cycle construction. ‘The tenacity of the pure metal
is, however, very low, and its ductility still lower, compared with
steel ; while no alloy containing a large percentage of aluminium,
and therefore very light, has been found to combine the strength
and ductility necessary for it to compete favourably with steel.
Of course, for parts which are not subjected to severe stresses it
may probably be used with advantage.

221, Frames of Ladies’ Safeties.—T'hc design of the frame of
a ladies’ Safety is more difficult than the design of the frame
for a man’s Safety. In the early Ladies’ Safeties the frame was
usually of the single tube type, and may be represented by the
¢ Rover’ Ladies’ Safety (fig. 263). The single tube from the crank-
bracket to the steering-head is subjected to the entire bending-
moment, and must thereforc be of fairly large section. If the
lady rider wears skirts, the top tube, as used in a man’s bicycle,
must be omitted ; and if a second bracing tube be introduced, it
must be very low down. Figure 264 shows one of the usual
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forms of Ladies’ Safety, a tube being taken from the top of the
steering-head to a point on the down-tube a few inches above
the crank-bracket. By this arrangement, of course, the down-

Fic. 263.

tube is subjected to a bending stress, while the frame, as a whole,
is weakest in the neighbourhood of the crank-axle. Since the
bending-moment on the frame diminishes from the crank-axle

towards the front wheel centre, it is better to have the two tubes
from the steering-head diverging (fig. 265) instead of converging
as they approach the crank-axle ; the depth of the frame would
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then vary proportionally to the depth of the bending-moment
diagram, and the bending stresses on the members of the frame

Fic. 26s.
would be least. Such an attempt at bracing the frame of a Ladies’
Safety, as is illustrated in figure 266, is useless, since at the point 2
the depth of the frame is zero, and the
only improvement is that the bending
at the point 2 is resisted by two tubes P
instead of one.

222. Tandem Frames.— A great
variety of frames are in use at present, the
processes of natural selection not having
gone on for such a long time as is the case with frames for single
machines. A frame (fig. 267), resembling that of the ordinary
diamond-frame, with
the addition of a cen-
tral parallelogram, has
been used. It will be ‘
noticed at once that
the middle portion is
not arranged to the
best advantage for re- ==
sisting shearing-force,
so that as regards strength, the middle portion of the frame issimply
equivalent to two tubes lying side by side and subjected to bending.

u

FiG. 266.

Fic. 267.
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Figure 268 shows a tandem frame, by the New Howe Machine
Company, in which three tubes resist the bending on any vertical
section : and figure 269 shows a frame, by the Coventry Machin-

Fic. 243.

ists’ Company, with the front seat arranged for a lady. Both
these frames should be stronger, weight for weight, than that in
figure 267, but they are not perfectly braced structures, and the
bending-moment on the tubes will be considerable.

Fiei. 269.

The addition of a diagonal to the central parallelogram, indi-
cated by the dotted line (fig. 267), converts the frame into a
braced structure, and the strength is proportionately increased.



CHAP. XXII The Frame 291

The front quadrilateral of the frame (fig. 267) requires a
diagonal to make the frame a perfectly braced structure, and,
though riding along a level road, it is possible, by properly
disposing the top and bottom tubes, to insure that there shall be
no bending on them, it would seem advisable to provide against
contingencies by inserting this diagonal in tandem frames. Such
is done in the ¢ Thompson & James’s’ frame (fig. 140).

Figure 270 shows a tandem frame, made by Messrs. J. H.
Brooks & Co., intended to take a lady on either the front or back
scat. On the side of the machine on which the chain is placed,
instead of a single fork-tube two tubes are used, one above and
one below the chain, and both lying in the plane of the chain.

Fi.. 270.

Thus the lower part of the frame constitutes a beam to resist the
bending-moment, and the upper portions are used merely to
support the saddles.

Figure 271 shows a tandem frame also intended to take a lady
on either the front or back seat, designed by the author. The
frame is dropped below the axle the lower part is, in fact, a
braced structure of exactly the same nature as that in figure 267.
The crank-bracket is held by a pair of levers, the lower ends of
which are hinged on the pin at the lower point of junction of the
frame tubes. The upper ends can be clamped in position on the

tubes which form the chain-struts. The driving-wheel spindle is
U 2
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thus permanently fastened to the frame, and therefore remains
always in track. A single screw is used to adjust the crank-bracket,
on releasing the top clamping screws of the supporting levers.
Although this is a reversion to the hanging crank-bracket, it may

FiG. 271

be pointed out that it is connected rigidly to the frame at four
points, and may therefore be depended upon not to work loose.
223. Tricycle Frames. -In the early tricycles Y-shaped

Fic. 272,

frames for front-driving rear-steerers and loop-frames for front-
stecrers were usually employed, while in side-drivers, such as the
Coventry Rotary, the frame was T-shaped, the top of the T being
in a longitudinal direction. The frame of the “ Cripper’ tricycle -
(fig. 150) was also T-shaped, the top of the T forming a bridge
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supporting the axle, and the vertical branch of the T running
forward from the middle of the axle to the steering-head and
supporting the crank-axle and seat. These frames were almost
entirely unbraced, and their strength depended only on the
diameter and thickness of the tubes.

The diamond-frame for tricycles, on the same general lines as
the diamond-frame used in bicycles, marks a great improvement

FiG. 273.

in this respect, figure 272 illustrating the frame of the ¢Ivel’
tricycle. Figure 152 illustrates a tricycle with diamond-frame
made by the Premier Cycle Company (Limited). It will be
noticed that the frame is the same as that for a bicycle, with the
addition of a bridge and four brackets supporting the axle. The
next improvement, as regards the proper bracing of the frame, is
the spreading of the seat-struts, so that they run towards the ends
of the bridge, the bending stresses on the axle-bridge being slightly
reduced by this arrangement.  Figure 273 shows a tricycle with
this arrangement, by Messrs. Singer & Co., but with the front part
dropped, so that it may be ridden by a lady.

In nearly all modern tricycles the driving-axle has been
supported by four bearings, two near the chain-wheel, so that the
pull of the chain can be resisted as directly as possible, and two



204 Details CHAP. XXII.

at the outer ends, as close to the driving-wheels as possible, each
bearing being held in a bracket from the bridge. The whole
arrangement of driving-axle, bridge, and brackets looks rather
complex, while the chain-struts are subjected to the same severe
bending stresses as those of a bicycle (sec. 238). A great
improvement is Starley’s combined bridge and axle, the bridge
being a tube concentric with, and outside, the axle. Figure 274 is

FiG. 274.

a plan showing the arrangement of the combined bridge and axle,
crank-bracket and chain-struts, as made